

AFRL-IF-RS-TR-2003-83

Final Technical Report
April 2003

IMPERISHABLE NETWORKS: COMPLEXITY
THEORY AND COMMUNICATION NETWORKING -
BRIDGING THE GAP BETWEEN ALGORITHMIC
INFORMATION THEORY AND COMMUNICATION
NETWORKING

General Electric Global Research

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. AOM100

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-83 has been reviewed and is approved for publication.

APPROVED:
 SCOTT S. SHYNE
 Project Engineer

 FOR THE DIRECTOR:
 WARREN H. DEBANY, Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
APRIL 2003

3. REPORT TYPE AND DATES COVERED
Final Jun 01 – Dec 02

4. TITLE AND SUBTITLE
IMPERISHABLE NETWORKS: COMPLEXITY THEORY AND
COMMUNICATION NETWORKING - BRIDGING THE GAP BETWEEN
ALGORITHMIC INFORMATION THEORY AND COMMUNICATION
NETWORKING
6. AUTHOR(S)
Stephen F. Bush, Scott Evans, and Amit B. Kilkarnni

5. FUNDING NUMBERS
C - F30602-01-C-0182
PE - 62301E
PR - FTNP
TA - M1
WU - 00

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
General Electric Global Research
One Research Circle
Niksayuna New York 12309

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-83

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Scott S. Shyne/IFGA/(315) 330-4819/ Scott.Shyne@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The most significant result from this project has been experimental validation that complexity plays a critical role in
information assurance and can be broadly applied as the basis for security analysis and fault tolerant network design.
Complexity Theory is a large and rapidly evolving science. As progress is made in various topics of Complexity Theory,
the individual topics will help to re-enforce each other. Our goal has been to reduce the requirement and dependence
upon detailed a priori information about known attacks and detect novel attacks by computing vulnerability and detecting
anomalous behavior based upon an inherent, fundamental property of information itself, namely, its complexity and
sophistication. Results of complexity measures applied to network protocols, processes, and information have been
presented and related to Information Assurance and network fault tolerance. Active networks form an ideal environment
in which to study the effects of trade-offs in algorithmic and static information representation because an active packet
consists of both code and static data. The code can contain the protocol or a compressed form of the data to be
transported. If the code is the protocol, then information about the complexity of the protocol can be gleaned from the
active packet code. An active packet that has been reduced to the length of the best estimate of the Kolmogorov
Complexity of the information it transmits will be called the minimum size active packet. There are interesting
relationships between Kolmogorov Complexity, prediction, compression and the model size used in the Active Virtual
Network Management Prediction (AVNMP) mechanism. These relationships are throughout this report.

15. NUMBER OF PAGES
156

14. SUBJECT TERMS
Active Networks, Complexity Theory, Information Assurance, Kolmogorov

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Introduction . . 3

Methods, Assumptions and Procedures .6

1. Methods and Assumptions . 7

1.1 Methods and Assumptions . 7
Hypothesis 1 . 7
Hypothesis 2 . 7
Hypothesis 3 . 8

1.2 Project Challenges . 8
1.3 Challenge Questions . 8

2. Discussion .10

2.1 Survey of Relevant Existing Security Techniques and Theory . 11
Bennett/Zurick . 11
Harmon . 11
Fisher Information . 11
Current Security Techniques . 11
Analogy to Thermodynamics . 11
Analogy to electrical engineering . 11

2.2 The Network Insecurity Path Analysis Tool (NIPAT) . 12
Failure of the grid-based approach . 16
Fundamental properties and parameters of information . 16
Towards complexity-based information assurance . 17
Information assurance via set theory and complexity . 18
Topological space for information assurance . 18

2.3 An Information Assurance Model . 19
2.4 Brittle systems, deterministic finite automata, and vulnerabilities . 20
2.5 Kolmogorov Complexity . 24

Complexity and vulnerability in information assurance . 25
Measures of information complexity . 27
Process vs. data complexity . 29
Vulnerability reduction by means of system optimization . 30
Apparent complexity . 31
Conservation of complexity . 32
Theorems of conservation . 32

2.6 Complexity Estimation Algorithms for Information Assurance . 33
Detection of FTP exploits using protocol header information . 33
Detection of DDOS using differential complexity of data payload . 34

i

Introduction to Complexity . 3
Measures of Complexity . 3

Summary .1

goodelle
 Table of Contents

Complexity-based vulnerability analysis . 36
Methods of estimating complexity . 36
A comparison of ubiquitous complexity estimators . 37
Minimum description length principles . 38
Sophistication . 39
A new complexity and sophistication estimation algorithm . 39
The effect of a partition on MML . 40
Symbol compression ratio . 42
Optimal Symbol Compression Ratio (OSCR) algorithm . 43

OSCR ALGORITHM . 45
Comparison with Lempel-Ziv78 . 45
Comparison of estimators for detection of FTP exploits . 45

2.7 Detecting Distributed Denial-of-Service Attacks using Kolmogorov Complexity Metrics 46
Approach ... 46
Complexity estimates ... 48
Experimental results . 48

3. Kolmogorov Complexity as a Fundamental Metric Enabling Vulnerability Analysis 50

3.1 Automated discovery of vulnerabilities without a priori knowledge of vulnerability types 50
System under evaluation: the active network . 50
Complexity surface: the Kolmogorov Complexity map . 52

3.2 A Priori Vulnerability Analysis: The Network Insecurity Path Analysis Tool 54
Complexity-based insecurity flow . 55
Safeguard optimization techniques . 56

3.3 Introduction . 57
Motivation . 57
Components of the analysis . 58
Properties of security . 59

3.4 Vulnerability Metrics with physical analogs . 60
Volume . 60
Entropy . 60
Density, mass and energy . 60
Complexity . 60
Turing Machines and Kolmogorov Complexity . 61
Complexity as a Vulnerability Metric . 61
Topological Space for Information Assurance . 63

3.5 Brittle Systems, Deterministic Finite Automata, and Vulnerabilities . 64

Results . 69

4. Active Networks . 70

4.1 Active virtual network management prediction overview . 71
AVNMP overhead . 72
Task execution time and message overhead . 73
AVNMP robustness . 73

4.2 Towards complexity . 74
4.3 AVNMP and Kolmogorov complexity . 75

Load prediction and complexity in active virtual network management prediction 76
Prediction convergence and complexity . 77
Self-regulation via complexity . 77

5. Fault Identification and Extraction . 79

5.1 AVNMP and fault prediction . 80

ii

5.2 Algorithmic fault detection and generation . 81
5.3 Distributed denial of service example . 82
5.4 Towards complexity-based solution composition . 83
5.5 Summary . 85

6. Information Assurance . 86

6.1 Analysis of the Evolution of Complexity . 86
Emulation of complexity evolution . 86
The Turing machine . 88
The program . 88
The input and output tapes for the turing machine . 89
The attractive force . 89

6.2 Experimental Results from the Evolution of Complexity . 91
6.3 Complexity-Based Vulnerability Analysis . 94

Mozart and vulnerability analysis . 95
Experimental validation of complexity-based vulnerability analysis . 95
Design of a complexity-based vulnerability analysis tool . 96
Applying complexity to vulnerability analysis . 97
The network insecurity path analysis tool and complexity-based vulnerability analysis 98
The distribution of insecurity information . 98

7. Self-Healing Information System .100

Complexity and Evolutionary Control . 101
The Application of Complexity in a Communications Network . 102
The Genetic Algorithm . 103

Kolmogorov Complexity . 104
Towards a Self-Evolving Network System . 106

Approach . 106
Genetic Network Programming Architecture . 106

Genetically programmed active network jitter control . 108
Jitter control: a simple test case . 109

Conclusions . 110
References . 111

Appendix A
Operation of the Network Insecurity Path Analysis Tool (NIPAT) . 120

Appendix B
Draft Standard: Inline Network Management . 124

B.1. In-Line Network Management Prediction draft-ietf-bush-inline-predictive-mgt-00 124
Abstract . 124
Implementation Note . 124

B.2. Introduction . 124
Overview . 125
Outline . 125
Definitions . 126
Goals . 128

B.3. A Common Representation of SNMP Object Time Series for In-line Network Management Predic-
tion . 128
B.4. A Common Algorithmic Description . 128
B.5. Multi-Party Model Interaction . 130

iii

Model Registration . 130
Model Interaction . 130
Co-existence with Legacy SNMP . 131

B.6. A Common Predictive Framework . 131
B.7. Summary of In-line Prediction Requirements . . 133
B.8. Details of the Active Network Interface . . 134

Information Caches . . 134
Interface to SNMP . . 134

B.9. Implementation . . 135
Predictive In-line Management Information Base . . 135

B.10. Security Considerations . . 135
References . 135

Glossary and Definitions.......................... .139

iv

Figures

Figure 1. Definitions and Measurements of Complexity . 4

Figure 1. Electrical and Information Assurance Properties . 12

Figure 2. A Grid-Based Tool in Action . 12

Figure 3. Topographical Map of Security . 14

Figure 4. Density Graph of Security . 14

Figure 5. An Example of Security Safe Guard Assumption . 15

Figure 6. Series versus Parallel Vulnerability Attack . 15

Figure 7. Various stages of attack . 16

Figure 8. Set Theory View of Secure Operation . 17

Figure 9. Definition of Brittleness . 20

Figure 10. Example of Deterministic Finite Automation . 21

Figure 11. Ductile Vulnerability . 21

Figure 12. Brittle Vulnerability . 22

Figure 13. Definition of Brittleness . 22

Figure 14. A Simple DFA . 22

Figure 15. Complex Version of the DFA Shown in Figure 14 . 23

Figure 16. Brittle Measure of DFA Shown in Figure 14 . 23

Figure 17. Complexity of DFA Shown in Figure 14 . 23

Figure 18. Brittle Measure of System Shown in Figure 14 . 23

Figure 19. Complexity Measure of System Shown in Figure 14 . 24

Figure 20. Evolution of Complexity Caused by Attack and Defense . 26

Figure 21. Finite Automation Representation of 1012- . 27

Figure 22. Complexity of Union of Automata versus Sum of Complexities . 27

Figure 23. Automata and Compression-Based Measures of Complexity . 28

Figure 24. Markov Model for String Generation . 28

Figure 25. Variation of Psi and ICR with p . 29

Figure 26. Process versus Data Vulnerabilities . 29

Figure 27. Program size versus Speed Tradeoffs . 30

Figure 28. Active Packet Morphing for Network Optimization . 30

Figure 29. Vulnerability as Unknown Behavior . 31

Figure 30. Inverse Compression Ratio of Filtered FTP Session Trace Files For Attacks and Healthy Sessions
33

Figure 31. Conservation of Complexity Applied to FTP Exploits . 33

Figure 32. Topology of the experiment . 35

v

Figure 33. Performance of packet counting metric . 35

Figure 34. Performance of complexity-based metric . 36

Figure 35. Hierarchy of computational platforms in estimating complexity. 37

Figure 36. LZ78 binary tree representation of the partition for the binary string:
1011010010011010010011101001001100010. Nodes contained in the partition are colored in black

37

Figure 37. Complexity estimate in bits vs. randomness of data . 38

Figure 38. Complexity estimation variance vs. randomness of data . 38

Figure 39. Comparison of sophistication and Kolmogorov Complexity . 39

Figure 40. More equally likely symbols in a partition cause the Entropy to increase – raising the bits per sym-
bol descriptive cost in a less than linear manner. 41

Figure 41. Symbol length and number of repetitions of equal length equally likely symbols comprising a string
of finite length produce competing affects in total string descriptive cost. 41

Figure 42. Descriptive cost vs. number of repeats for two symbol partitions of the 1000 bit string 101010101…
 41

Figure 43. Estimate of Rlog2(R) . 42

Figure 44. SCR vs. Symbol Length for 1024-bit String . 43

Figure 45. Figure 16 SCR vs. Repeats for 1024 bit String . 43

Figure 46. Binary Tree for a specific string. Nodes included are in white . 44

Figure 47. Binary Pattern Tree in first pass of algorithm . 44

Figure 48. Huffman Tree for Symbol Partition . 45

Figure 49. Comparison of OSCR vs. Zip Compress for FTP data . 46

Figure 50. Comparison of OSCR vs. Zip Compress Compression Ratio . 46

Figure 51. Implementation in Magician Active Node . 46

Figure 52. Principle of conservation of complexity . 47

Figure 53. DDoS detection architecture . 47

Figure 54. Topology for experiment . 48

Figure 55. Performance of packet-counting metric . 49

Figure 56. Logical view of complexity-based vulnerability analysis process . 50

Figure 57. Same active packet information; varying hypotheses (proportion of code to data) 51

Figure 58. Static versus active information in the Mathematica active network simulator. 52

Figure 59. Algorithmic versus static active network information load . 52

Figure 60. Component complexity for components B, C and E. 52

Figure 61. Mean component complexities for B, C and E. . 53

Figure 62. Kolmogorov Complexity map (K-Map) . 53

Figure 63. System under analysis: components and topology . 53

Figure 64. Minimum complexity paths matrix . 53

vi

Figure 65. Insecurity flow graph . 53

Figure 66. Grid-based representation of information assurance . 54

Figure 67. Flow results matrix . 54

Figure 68. Complexity surface for system in Figure 84 . 54

Figure 69. Insecurity flow contour of system in Figure 63 . 54

Figure 70. A grid-based tool action . 55

Figure 71. Most likely attack path . 55

Figure 72. Maximum flow paths . 55

Figure 73. Conceptual view of a vulnerability and attack detection complexity grid. 58

Figure 74. Set Theory View of Secure Operation . 62

Figure 75. Definition of brittleness: brittle versus ductile performance . 64

Figure 76. Example deterministic finite automaton of a system undergoing brittle analysis with the complex-
ity-based vulnerability metric . 64

Figure 77. Ductile resistance to attack for system in Figure 79 with fault (7, 3, 2) . 65

Figure 78. Brittle resistance to attack for system in Figure 79 with fault (1, 3, 1) . 65

Figure 79. A disperse (low density) DFA . 66

Figure 80. Implementation of the DFA in wFigure 84that approaches true complexity 66

Figure 81. Brittle measure of DFA shown in Figure 78 in dimensions of Als/|V| versus tfaulty 67

Figure 82. Complexity of DFA shown in Figure 78 in dimensions of K(DFA) versus tfaulty 67

Figure 83. Complexity measure of system shown in Figure 79 in dimensions of K(DFA) versus tfaulty 62

Figure 84. Brittle measure of system shown in Figure 79 in dimensions of Als/|V| versus tfaulty 68

Figure 85. Algorithmic content . 67

Figure 86. Experimental configuration . 71

Figure 87. State queue. 72

Figure 88. Tolerance setting decreases as wallclock increases thus demanding greater accuracy 72

Figure 89. Demand for greater accuracy causes the proportion of out-of-tolerance messages to increase . 72

Figure 90. Predictions become more accurate… . 73

Figure 91. …at the expense of lookahead… . 73

Figure 92. …and speedup . 73

Figure 93. Number of virtual messages versus wallclock . 73

Figure 94. Expected task execution time as a function of wallclock . 73

Figure 95. Number of anti-messages versus wallclock. . 74

Figure 96. Active networks and legacy networks as viewed by AVNMP . 74

Figure 97. Active versus passive form of AVNMP . 75

Figure 98. Better Prediction Implies Smaller Packets Implies Better AVNMP Performance Implies Better Pre-
diction . 76

Figure 99. Load Prediction Hypothesis. . 76

vii

Figure 100. Simple AVNMP Hypotheses for Load Prediction. . 76

Figure 101. Estimated Complexity and Error within AVNMP . 77

Figure 102. Converging Predictions. 77

Figure 103. Algorithmic content. 80

Figure 104. Self-correcting simulation versus fault correction within the actual system 80

Figure 105. AVNMP SNMP Case Diagram . 81

Figure 106. Case diagram for IP . 82

Figure 107. Statistics maintained for each interface . 82

Figure 108. Traffic through interfaces . 82

Figure 109. Predicted versus actual load. . 83

Figure 110. Reflecting the attack via code reversal . 83

Figure 111. Selected mathematica complexity functions. . 84

Figure 112. Hypotheses, complexity, and entropy in anti-fault generation . 85

Figure 113. Definition 6.4 with Estimated Complexities for the Data and Program 86

Figure 114. Emulation Components and High Level Dynamics . 87

Figure 115. CyberSwarm Simulation at 100 and 300 Time Units . 87

Figure 116. Architectural layers for information assurance . 89

Figure 117. Single Entity Transitions and Length . 91

Figure 118. Single Entity Change in Complexity . 91

Figure 119. Envelopment and Happiness . 92

Figure 120. Data Exchanges and Generation with and without Program Execution 92

Figure 121. Program Timeouts . 92

Figure 122. Turing Machine Transitions and Bit-String Length . 93

Figure 123. Total System Estimated Complexity . 93

Figure 124. Bit-String Length . 93

Figure 125. Complexity per Length . 94

Figure 126. Expected Complexity over Time . 94

Figure 127. Prototype tool combining the grid-based vulnerability analysis technique with the complexity-
based vulnerability analysis method . 98

Figure 128. Cycle of attack and defense viewed through complexity as a cycle, or evolution, of complexity 99

Figure 129. DNA and an Active Packet. 102

Figure 130. Complexity of Genetic versus Evolutionary Time Steps with Population 128 105

Figure 131. Cumulative Fitness Function of Genetic Material with Population 128 105

Figure 132. Complexity and Fitness Comparison. . 105

Figure 133. Injection of the Nucleus . 107

viii

Figure 134. Functional Units, Evolution, and Fitness . 107

Figure 135. Single Node Genetic Programming Architecture . 107

Figure 136. Breeding Traffic Streams . 107

Figure 137. Multiple Levels of Fitness . 108

Figure 138. Recombination Levels . 108

Figure 139. Chromosomes and Routing . 108

Figure 140. Packet Link Transit Variance (

milliseconds

2) on Destination Node Through Chromosome One .
109

Figure 141. Packet Link Transit Variance (

milliseconds2

) on Destination Node Through Chromosome Two 109

Figure 142. Packet Link Transit Variance (

milliseconds

2) on Destination Node Through Chromosome Three
 109

Figure 143. Packet Link Transit Variance (

milliseconds2

) on Destination Node Without Jitter Control.........109

Figure 144. Attack Vectors .120

Figure 145. Vector Graph Expanded View .121

Figure 146. Target Details Expanded . 121

Figure 147. Probabilistic Attack Path Analysis . 122

Figure 148. Probability of Attack . 122

Figure 149. Most Likely Attack Path . 122

Figure 150. Maximum Flow Results . 123

Figure 151. Maximum Flow Graph . 123

Figure 152. The Distributed Model Inside the Network . 125

Figure 153. Relationship Among Underlying Assumptions about the Predictive Management Environment.
126

Figure 154. MIB Structure for Handling Object Values with Predictive Capability . 128

Figure 156. An Example Case Diagram . 129

Figure 157. A Sample Algorithmic Description. 129

Figure 155. Output from a Query of the MIB Structure for Handling Object Values with Predictive Capability.
130

Figure 158. An Algorithmic Description Using State Generated from Another Node Described in Figure 159.
130

Figure 159. A Node Generating State Information Used by the Node in Figure 158. 130

Figure 160. Framework Entity Types. 131

Figure 161. A High-level View of the Logical Process Framework Component within an Active Application.131

Figure 162. An In-line Management Prediction Virtual Message . 132

Figure 163. A Logical Process Implementation and Interface. . 132

Figure 164. Facility for Checking Accuracy with Actual Network SNMP Objects in the In-line Predictive Man-
agement Framework . 132

ix

Figure 165. The Active Network Framework . 134

Figure 166. Message Packet . 134

Figure 167. Acknowledgment Message Packet . 135

Figure 168. The Atropos MIB . 135

x

Tables

Table 1 Electrical and information assurance properties . 12

Table 2 Brittle System Definitions. 21

Table 3 Table 1: OSCR parameters. 40

Table 4 Symbol Distributions . 45

Table 5 Encoded Lengths for several short strings. 45

Table 6 . 63

Table 7 Brittle vulnerability analysis definitions . 66

Table 8 AVNMP Parameters . 71

Table 9 Entities and Their Representation in the Emulation. 87

Table 10 Emulation Control Variables . 88

Table 11 Component Vulnerabilities . 95

xi

Preface

A precise definition of complexity itself has been an
ongoing debate, and there are many definitions; this
report briefly compares and contrasts the defini-
tions. It then settles upon algorithmic complexity,
specifically, Kolmogorov Complexity, as a working
definition and proceeds to explore the unique para-
digm shift that appears when communication net-
work fault tolerance is viewed through the lens of
Kolmogorov Complexity. Our application of com-
plexity to communication networking is directed
toward both the current and next-generation Inter-
net. Many emerging communication network tech-
nologies are discussed in this report such as self-
healing networks, intelligent and predictive net-
works, active networks, predictive network manage-
ment, and information assurance and network
security technology. However a common thread,

namely, the role of complexity, emerges to tie
together these previously disparate technologies in
new and unique ways. In addition, the application to
information assurance is an extremely timely topic,
given Microsoft’s recently announced focus on fix-
ing their product’s security flaws. Recent tragic ter-
rorist events clearly demonstrate that the civilian
and military internets are vulnerable targets. We
hope to spark new ideas in multidisciplinary fields;
we are standing on the shoulders of two giants—the
communication networking community and the
founding fathers of algorithmic information the-
ory—while attempting to make the work of both
communities understandable to each other as well as
to a general audience in the hope of synthesizing
new ideas in the minds of all readers.

—Stephen F. Bush February 03, 2002

xii

Acknowledgements

The work presented in this report was funded in full by DARPA, under the auspices of the Fault Tolerant
Networking Program. Our thanks go to Doug Maughan, the Active Networks and Fault Tolerant Networking
Program Manager, and Scott Shyne, Air Force Rome Labs, for their generous support.

xiii

Summary

A seminal contribution of this effort was pre-
sented—the development of a complexity-based
information assurance metric for vulnerability analy-
sis. The metric proposed is Kolmogorov Complexity.
Advances in computable estimates of Kolmogorov
Complexity are indicated, as well as additional appli-
cations of Kolmogorov Complexity for fault tolerant
communications in general. Unless vulnerabilities
can be identified and measured, the information
assurance of a system can never be properly
designed or guaranteed. An underlying definition of
information security is hypothesized based upon the
attacker and defender as reasoning entities, capable
of learning to outwit one another. Estimates of Kol-
mogorov Complexity provide such an objective
parameter with which to provide information assur-
ance through anomaly detection and objective
model development. The capability of this metric is
limited in part by the accuracy of its estimation,
which must be traded against computational
expense. The Optimal Symbol Compression Ratio
Algorithm, used to estimate complexity and sophisti-
cation, provides additional capability to discern
anomalous behavior in information systems. Further
research is needed to develop strategies for cost-
effective use of this paradigm across entire systems.

The desirable properties of a metric for security
are examined (Section 3.3). In order to further the
development of a realistic metric, a general model
for studying information assurance is proposed (Sec-
tion 4). Next, a definition of vulnerability is pro-
posed in terms of a new model based on Turing
Machines (Hypothesis 4.1), and engineered proper-
ties of information assurance with an analogy to
mechanical engineering are proposed in terms of
the new model. The analogy with mechanical engi-
neering is called Brittle Systems (Section 5) and
involves the design of information assurance in a
manner that accounts for tradeoffs in performance
and degradation of information assurance in a sys-
tem. Information assurance is also examined from
the perspective of set theory and a topological space
(Section 3.5). This is particularly relevant towards
understanding the operation of the metric with
regard to secure composition and the inherent lim-
its of applying safeguards to a system.

The advantages and drawbacks of Kolmogorov
Complexity are discussed, including its incomput-

able nature. However, computable estimates (Sec-
tion 6.2) of Kolmogorov Complexity are explained,
as well as additional useful applications of Kolmog-
orov Complexity for communications in general.
These additional applications are important because
they demonstrate how information assurance is an
integral part of information system design. Next
Theorems 6.1 and 6.2 concerning the conservation
of complexity (Section 6.7) within an information
system were discussed. This led to a Swarm experi-
ment that monitors the evolution of complexity in a
dynamic and complex system and examines our abil-
ity to monitor the complexity as it evolves. Unless
vulnerabilities can be identified and measured, the
information assurance of a system can never be
properly designed or guaranteed. Results from a
study on complexity evolving within an information
system using Mathematica (Section 9.2), Swarm, and
a new Java complexity probe toolkit (Section 9.4),
developed by this project, were presented in this
report. An underlying definition of information
security was hypothesized (Hypothesis 9.1) based
upon the attacker and defender as reasoning enti-
ties, capable of learning to outwit one another. This
leads to a study of the evolution of complexity in an
information system and the effects of the environ-
ment upon the evolution of complexity. Under-
standing the evolution of complexity in a system
enables a better understanding of how to measure
and quantify the vulnerability of a system. Finally,
the design of the Java complexity probes toolkit
under construction for automated measurement of
information assurance is presented (Section 9.5). A
dialog is included that contains typical questions
about the relationship between complexity and
information assurance. This dialog is best read after
reading the introduction Kolmogorov Complexity
(Section 6.1) or for someone already familiar with
complexity theory who wants a quick overview of the
approach taken on this project toward the relation-
ship between complexity and information assur-
ance.

Another result of this project is the concept of
conservation in the evolution of complexity in a sys-
tem and the search for a bound on the change in
complexity such that abnormal behavior can be
detected when the bound is exceeded. This work
demonstrated a promising approach for further

1

exploration into the laws governing complexity and
the evolution of complexity within a system using
simulation. Finally, complexity probes were devel-
oped to enhance a security-engineering tool based
upon an electrical engineering paradigm with com-
plexity as the resistance to insecurity flow.

Blindly applying current communication and
computation technology on MEMS devices would be
fighting a losing battle against nature. The proposi-
tion this report hoped to reinforce in the readers'
mind was that MEMS devices can be more efficiently
engineered by working with, instead of against, the
environment in which they are placed. Specifically,
two approaches were proposed for revolutionary
gains in MEMS device communication. The first was
to view all network devices as computational or
active devices. Computation can take many forms.
The amount of computation may vary, but every
device has some type of computation, either pro-
grammed or ambient. Use of computation in an
optimal manner is the same challenge faced by
active networks. Thus, advances in active networks
and networks of MEMS devices are mutually benefi-
cial. The second approach was to optimize networks

of MEMS devices via exploiting emergence. Under-
standing emergence requires understanding com-
plexity; that relationship was touched upon relative
to networking in this report. Use of emergence
shows promise as a means to precisely engineer
desired characteristics into systems of MEMS devices
resulting in reduced size by removing unnecessary
computation and control.

This report shows that a genetic algorithm shows
sudden decreases in complexity of the population
between generations as the algorithm evolves in
response to the fitness function. Lower complexity
corresponds to greater homogeneity in the popula-
tion and greater fitness to the chosen criterion. Thus
it can be clearly seen that complexity can be used as
one indicator of progress in evolution of the genetic
algorithm. A framework for testing the injection of
fitness functions into an active network that evolves
solutions via a genetic programming technique has
been implemented. Future work involves testing the
response time to heal and the resiliency of the net-
work in the presence of faults.

2

Introduction

Complexity is being studied in a myriad of disci-
plines and in many different ways. Measures of com-
plexity have been derived in attempt to understand
complexity, but they have disadvantages, either they
do not fully capture the nature of complexity, or
they are fundamentally incomputable.

INTRODUCTION TO COMPLEXITY

The word complexity comes to us from the Latin
word

complexus

, meaning ‘in totality’ or ‘a whole set
consisting of many interconnecting parts.’ The defi-
nition of the word includes the connotation ‘diffi-
cult to understand’. The Universe, as well as every
object in the Universe, consists of many intercon-
nected parts. Humans have attempted to reduce the
apparent complexity of nature, in other words to
understand the Universe, by observing particular
instances of the operation of subsets of intercon-
nected, or interacting, parts. Hypotheses are gener-
ated, experiments to test those hypotheses are
developed, and the outcome of the experiments
either reinforces, or counters the hypotheses. Varia-
tions on the original hypotheses, or entirely new
hypotheses are generated and tested and the cycle
continues. Science has progressed in this manner in
search of the essence, or most general underlying
explanation for as many phenomena as possible. As
discussed later in this report, the very critical act of
hypothesis formation and testing, the Scientific
Method, the foundation of science upon which Man
depends for advances in every aspect of civilization,
is itself governed and characterized by complexity.

How far can the Scientific Method, described
above, take us in understanding Complexity The-
ory? When one studies complexity as a science, the
focus becomes a simplified understanding of large
numbers of interactions. Subtle, yet insidious prob-
lems render the study of complexity a challenging
problem. The particular details of individual parts,
important in specifying interactions, are less impor-
tant to the understanding of complexity than the
interactions. An exception is when the parts them-
selves consist of many interacting parts. This implies
the existence of layers of complexity. How can one
obtain a perfectly closed subset of the Universe in
which to test hypotheses concerning complexity?
The mere act of measuring any characteristic of such

a system violates closure. How can one be certain
that there are no interactions at some unknown level
with in the supposedly closed system and the rest of
the Universe? Is it possible for one system to mea-
sure the complexity of another more complexity sys-
tem? These are some of the questions that we will
explore in this report. Gödel has demonstrated that
a system cannot completely describe itself with per-
fect fidelity. Berryman’s Paradox suggests that any
algorithm capable of computing complexity must be
at least as complex as the object whose complexity is
being measured. How can one measure the com-
plexity of an algorithm that measures complexity
without requiring a more complex algorithm? Mea-
suring the complexity of the more complex algo-
rithm requires an even more complex algorithm, ad
infinitum.

While studying Complexity Theory, researchers
focused on the science of interactions of large num-
bers of parts, have noticed that something amazing
happens under certain conditions. Unexpectedly
complex results, based upon simple interactions can
occur. This is known as emergence. Detecting and
controlling emergence could also lead to ground-
breaking results. The implications are that program-
ming simple interactions while letting emergent
behavior handle the bulk of the work in a robust
manner could control the desired characteristics of
a system. In other words, complexity theory, specifi-
cally through emergence, could provide a new and
much more efficient and robust form of control.
Ultimately, complexity theory and emergence could
progress to self-organizing systems. These are sys-
tems whose natural tendency is to align in a form
optimal to the task required. An example is a self-
healing system, that is, a system that inherently re-
forms to mitigate a fault.

MEASURES OF COMPLEXITY

There have been many attempts to define and mea-
sure complexity. Attempts to define the complexity
of a system might be broadly described as attempts
to remove portions or patterns, of the system that
are simple, leaving behind the portions that are
complex. The size of the remaining portions of the
system must then contain the complexity of the sys-

3

tem. In Figure 1 an attempt is made to cluster
selected known complexity measures into catego-
ries. The purpose of this figure is to show the great
variety of complexity techniques and to be able dis-
cuss broad classes of techniques. Except for a few
specific exceptions, details of each and every tech-
nique will not be discussed. The categories in this
classification describe the complexity estimation
technique and thus suitability to types of systems.
The arrows indicate subclasses of complexity estima-
tion techniques. The highest-level classifications are
Static and Dynamic techniques. Static techniques
assume the system whose complexity is to be esti-
mated does not vary with time as the estimation cal-
culation executes. A snapshot of a Dynamic system is
also considered a static system. Dynamic techniques
allow the system to change with time; in fact some
require that the system under analysis change with
time.

The Static complexity estimation techniques can
be further sub-classified into Algorithmic, Indepen-
dent Descriptions, and probabilistic categories.
Algorithmic techniques attempt to use an algorithm

as a fundamental description of the complexity of a
static snapshot of a system. Independent Description
techniques attempt to count the number of irreduc-
ible components needed represent a system, such as
number of dimensions, number of independent
models, or number of irreducible components.
Probabilistic techniques generally assume that low
complexity components are more likely than higher
complexity components. Probabilistic techniques
also assume attempt to use probability to determine
independence of sub components of a system allow-
ing the system to be partitioned into independent
components. In this work, Algorithmic techniques
are most relevant because of the nature of computa-
tion in the form of executable algorithms and its
relation to the transmission of information in the
form of static data. Algorithmic techniques are fur-
ther sub classified into Propositional Logic-based
and Automata-based techniques. Algorithmic tech-
niques also include minimum description methods
that seek to estimate complexity by determining the
smallest size to which a description can be com-
pacted. Complex descriptions, containing a larger

Figure 1. Definitions and Measurements of Complexity.

4

goodelle

number of “random” interactions and lacking any
form of repeatable patterns, cannot be described as
compactly as simple descriptions. Kolmogorov Com-
plexity is a complexity measure that falls within this
category.

Vladimir Gudkov has been exploring the mini-
mum number of dimensions required to character-
ize network information flow [163–166]. Vladimir’s
work could be categorized in the Dynamic, Self-
Organizing, Evolutionary, Chaotic group of com-
plexity theory techniques. Vladimir’s approaches
the development of network behavior description in
terms of numerical time-dependant functions of
protocol parameters. This provides a basis for appli-
cation of methods of mathematical and theoretical
physics for information flow analysis on network and
for extraction of patterns of typical network behav-
ior. The information traffic can be described as a tra-
jectory in multi-dimensional parameter-time space
with dimension about 10–12. The result of his work
could help to improve our Kolmogorov Complexity
estimators.

Kolmogorov Complexity is a measure of descrip-
tive complexity contained in an object. It refers to
the minimum length of a program such that a uni-
versal computer can generate a specific sequence. A
good introduction to Kolmogorov Complexity is
contained in [118] with a solid treatment in [10].
Kolmogorov Complexity is related to Shannon
entropy, in that the expected value of K(x) for a ran-
dom sequence is approximately the entropy of the
source distribution for the process generating the
sequence. However, Kolmogorov Complexity differs
from entropy in that it relates to the specific string
being considered rather than the source distribu-
tion.

The major difficulty with Kolmogorov Complexity
is that it is not computable. Any program that pro-
duces a given string is an upper bound on the Kol-
mogorov Complexity for this string, but you can’t
compute the lower bound, yet as will be discussed
later in this section, estimates have shown to be use-
ful in providing information assurance and intru-
sion detection.

Kolmogorov Complexity is a measure of descrip-
tive complexity that refers to the minimum length of
a program such that a universal computer can gen-
erate a specific sequence. Universal computers can
be equated through programs of constant length;
thus a mapping can be made between universal com-
puters of different types. The string x may be either

data or the description of a process in an actual sys-
tem. Unless otherwise specified, consider x to be the
program for a Turing Machine described in
Definition 1.

(1)

(2)

Conditional Complexity, described in Equation 2,
quantifies the complexity of string

x

, given string

y

.
Intuitively, it is the additional complexity of string

x

beyond that in string

y

. This definition of Kolmog-
orov Complexity is used repeatedly throughout the
remainder of this report.

Kolmgorov Complexity has been shown to pro-
vide a useful framework from which to study objec-
tive metrics and methodologies for achieving
information assurance. Recent results have shown
promise for complexity estimators to detect FTP
exploitsand DDoS attacks. Complexity is attractive as
a metric for information assurance because it is an
objective means of characterizing and modeling
data and information processes for the purpose of
benchmarking normal healthy behavior, identifying
weaknesses, and detecting deviations and anomalies.

Since exact measurement of Kolmogorov Com-
plexity is not computable, estimators are required.
The accuracy and computational requirements of
estimators together determine the capability or
practicality of use for a given application. For exam-
ple, the very crude complexity estimate of empirical
entropy carries very little overhead, but is suitable
for some applications. Other applications can bene-
fit from complexity metrics when more expensive
estimation algorithms are utilized, but the computa-
tional expense may not be feasible.

In this report we motivate the use of complexity
metrics for information assurance by discussing sev-
eral applications of complexity metrics for informa-
tion assurance, each of which depends in some sense
on accurate complexity estimators. We then discuss
and compare several ubiquitous complexity estima-
tors, their accuracy, and computational expense.
Finally, we introduce a new complexity estimator
and benchmark its capability against others for the
FTP exploit detection application.

Kϕ x() min l p()
ϕ p() x= 
 
 

=

Kϕ x y()
min l p()
ϕ p x,() y=

∞ if there is no p such that ϕ p x,(), y= 
 
 
 
 

=

5

Methods, Assumptions and Procedures

6

1. Methods and Assumptions

1.1 METHODS AND ASSUMPTIONS

The project report is presented in the form of three
hypotheses that correspond with the Imperishable
Network statement of work. Following each hypothe-
sis is a list of accomplishments relating to validation
of that hypothesis.

Hypothesis 1

The first project goal is to explore the hypothesis
that information comprised of observations from an
event, such as a fault or attack, which is generated by
a single root cause, is highly correlated. Highly cor-
related data has a low complexity and a high com-
pression ratio. However, this project is not focusing
on legacy static compression algorithms, but rather
algorithmic compression. Algorithmic compression
involves code that can dynamically change, and
when executed, regenerates the intended data. The
compression code is designed to be a hypothesis
about the data to be compressed. The more accurate
the hypothesis, the more efficient the compression.
Algorithmic compression and prediction are tightly
linked; if a program can predict data (generating
more data than the program’s size), then it is, by def-
inition, an algorithmically compressed form of the
data. Active networks form an ideal vehicle for trans-
mitting this form of fault information because they
facilitate the transmission of code within the net-
work. The most highly compressed, and thus most
likely, fault representations are transmitted faster
and farther due to their smaller size. Kolmogorov
Complexity,

 K(x)

, measures the size of the smallest
program capable of representing a particular piece
of data, thus providing guidance as to the optimal
amount of information within an active packet to be
in the form of code versus data. Specific accomplish-
ments towards this goal are:
1. A new algorithm that incorporates both Kol-

mogorov Complexity and entropy, facilitating
our study of the relationship between them, has
been devised to both estimate complexity and
perform compression.

2. A DDoS attack detection algorithm, based upon
our hypotheses regarding complexity theory,
has been implemented. Testing is underway
within our Active Network testbed. The algo-
rithm makes use of a fundamental theorem of
Kolmogorov Complexity we derived that states:

For any two strings

X

 and

Y, K(X,Y) <= K(X) +
K(Y)

, where

 K(X)

 and

K(Y)

 are the complexities
of the respective strings and

K(X,Y)

 is the joint
complexity of the two strings. Stated more sim-
ply the joint Kolmogorov complexity of two
strings is less than or equal to the sum of the
complexities of the individual strings. In other
words, the joint complexity of the string (data
stream) decreases as the correlation within the
string increases. This property is exploited to
distinguish between concerted denial-of-service
attacks and cases of traffic overload. The
assumption is that an attacker performs an
attack using large numbers of correlated packets
generated from different locations but intended
for the same destination. Thus, there is a lot of
similarity in the traffic pattern. A Kolmogorov
complexity based detection algorithm can
quickly identify such patterns. On the other
hand, a case of traffic overload in the network
tends to have many different traffic types and
the traffic flows are thus highly uncorrelated,
appearing to be “random.” Our algorithm sam-
ples distinct packet flows (distinguished by their
source and destination addresses) to determine
if there is a large amount of correlation between
the packets. If it is determined to be so, then all
suspicious flows at the node are again correlated
with each other to determine that it is indeed an
attack and not a case of a traffic overload. We
compared our technique to a simple packet
counting algorithm for DDoS detection and
found that our technique is much more sensi-
tive in detecting attack. Complexity differential
is defined as the difference between the cumula-
tive complexities of individual packets and the
total complexity computes when those packets
are concatenated to form a single packet. In
effect, we use the measure of the compressibility
of the packets accumulated in a given time inter-
val to determine correlation. We believe that it
will also be much more accurate in separating
false alarms from true attacks. This set of experi-
ments is underway.

Hypothesis 2

It is hypothesized that the degree to which informa-
tion can be compressed algorithmically is a measure

7

1.2 Project Challenges

of the ease of understanding the information, particu-
larly by an attacker. This concept is used to estimate
the vulnerability of a system through given observ-
able points within the system. Apparent complexity
has been defined in this project as the complexity
normalized to the prior knowledge of an individual.
Prior knowledge can be obtained automatically by
watching a potential attacker within a fishbowl, dur-
ing an attack, or assigned by other means. We
believe that our technique is more efficient, robust,
and ubiquitously applicable than developing a data-
base of vulnerabilities and testing for all potential
vulnerabilities as most people have been attempting.
1. Complexity probes (in the form of Magician

Active Packets) have been developed and a test
plan put together that would help verify this
hypothesis.

Hypothesis 3
It is hypothesized that the algorithmically com-
pressed representation of a network fault provides
unique opportunities for seeding the composition of
solutions that mitigate the fault. Thus, the relation-
ship between complexity and fault/solution compo-
sition is being explored for the development of self-
organizing solutions.
1. A simple Mathematica ‘simulation of an active

network has been developed that focuses on the
algorithmic aspects of data encoded within a
packet. It abstracts away networking details
allowing a focused study of the tradeoff in algo-
rithmic versus static information transmission.

2. A Mathematica‘-based Genetic Algorithm simu-
lator has been instrumented with complexity
estimation. A decrease in complexity was noted
during the initial evolutionary stages of all
genetic algorithms tested. In other words, as
optimal solutions evolved, the measurement of
the complexity of the total system decreased.

3. Previous work using genetic algorithms to both
determine Kolmogorov Complexity and gener-
ate algorithmic representation of multimedia
data were recently found in the literature and
help to validate our approach.

1.2 PROJECT CHALLENGES
Accurate estimation of Kolmogorov Complexity is
salient to its ubiquitous application to network fault
tolerance and security. We will benchmark our new
compression algorithm and estimator for K(x)
against other means in search of a model base under

MML that is effective in efficiently and accurately
estimating Kolmogorov Complexity.

With respect to the DDoS Kolmogorov Complex-
ity application, its performance will be compared to
other detection algorithms that are currently in use.
In particular, its performance has to be measured in
terms of resource tradeoffs, detection and false-
alarm probability and response time. It is hypothe-
sized that other DDoS detection techniques, while
optimized for detecting certain types of attacks, will
not be as robust in detecting all types of attacks.

A challenge for this project is identifying or devel-
oping the fundamental theory for composition of
solutions using Kolmogorov Complexity.

1.3 CHALLENGE QUESTIONS
1. How well can Kolmogorov Complexity be esti-

mated?
2. What are the benefits and tradeoffs associated

with algorithmic information transmission?
3. Can a network fault be represented algorithmi-

cally?
4. Can the algorithmic representation of a network

fault seed the formation of optimal solutions?
5. What is the meaning of the minimal Turing

Machine generated from a compression algo-
rithm?

6. Can a tolerance be incorporated to tradeoff
computation and complexity estimation?

7. Is there a convergent form of complexity estima-
tion, i.e. allowing the complexity to converge to
a value?

8. Can information fusion be accomplished more
efficiently using algorithmic forms of informa-
tion?

9. Could information that is in-transit within the
network be combined so as to reduce complex-
ity? Example: Bioinformatic data/algorithms
could be fused within the network from multiple
sources and only those combinations leading to
lowest complexity are kept. Assuming that lowest
complexity indicates most likely explanation.
Network complexity reduction: think of com-
plexity as energy; the network tries to find lowest
energy state.

10. What are the fundamental theorems derivable
from Kolmogorov Complexity that can allow us
to define algorithms for self-composition?

11. Much work has been done in the past on detect-
ing and measuring the impact of faults. How can
one quantify and measure the impact of solu-

8

 1. Methods and Assumptions

tions, which are of equal importance in match-
ing (composing) faults and solutions?

12. Chaos Theory views system operation in terms
of phase (state) space. Attractors are patterns in
phase space in which the system tends to remain
(a coherent organization). Think of attractors as
the gravitational pull keeping the network
together (or functioning properly). Because
attractors are patterns, they are highly compress-
ible (low complexity). Is a measure of the system
to self-organize is a ratio of the size of the attrac-
tor versus the size of the operational phase
space?

13. Consider algorithmic representation of faults.
Using reversible code (anti-code) it would be
possible to reverse the computation, i.e. elimi-
nate the fault. I believe they have developed
anti-code compilers. What could one say about
the complexity of code and its corresponding
anti-code?

9

2. Discussion
A key assumption of this work is that complexity and
information assurances are related. Clearly, the sys-
tem should appear complex to an attacker and sim-
ple to a legitimate user. However, in order to
anticipate questions that an astute reader might
have, this section is written in the form of a question
and answer dialog. Our colleagues have raised some
of these questions; however, identities will not be
revealed in order to protect the innocent.
Question: Aren’t higher complexity systems more vul-

nerable to attack? How does that correlate with
an attacker following the path of least vulnerabil-
ity?

Answer: Assume the Kolmogorov Complexity of a sys-
tem can be represented by x, that is, K(x), is by
definition, the size of the smallest program capa-
ble of generating x. Thus, K(x) does not vary with
the implementation of the system. In Section 5.0,
we discussed how the brittleness of a system
changes with respect to the efficiency of the
implementation. We define AKr(x) to be the com-
plexity of system x as viewed by attacker r. While it
is intuitively and empirically true that more com-
plex systems tend to have more security problems
this is attributed to the inability of the defender to
understand their own system fully and thus com-
prehend how to best defend it. It is the differen-
tial between the defenders understanding of a
system and an attackers understanding that is a
measure of true information assurance. The
desired goal is simplicity for the defender and
complexity for the attacker.

Question: Suppose, as an attacker, I have found an
encryption key. The encrypted data appears very
complex, yet knowing the key, I can easily obtain
the information.

Answer: There is an estimate of complexity known as
Minimum Data Length description that involves
compressing both data and the hypothesis used to
generate that data. If the apparent complexity,
AKr(x), is estimated for an attacker known to have
the encryption key, then the complexity will be
very low. The complexity of the encrypted data is
always K(x). The apparent complexity of the data
in the absence of the encryption key is much
greater than K(x). When an attacker gains the key

the differential between K(x) and apparent com-
plexity is dissolved and all security is lost.

Question: Wouldn’t an attacker choose to hide inside
a more complex component than a simple one?”

Answer: A similar question appears in the study of
work factor as an information assurance metric.
An attacker may be willing to spend more effort,
or take a higher complexity path, if he has the
time and has a suitably high interest in avoiding
detection. Again, the attacker can exploit the
defenders inability to understand their system.

Question: Wouldn’t estimating the complexity of
every bit-stream in a system require a lot of over-
head? Is there a more efficient way?”

Answer: An implementation of complexity-based vul-
nerability analysis that requires bit-stream level
computation for every possible data flow would
require a lot of overhead. One possible approach
is to look at more aggregate views of the system
and determine complexity from SNMP variables
as an example. However, consider that non-com-
plexity-based alternative approaches that attempt
to include extreme detail quickly find the prob-
lem to be overwhelming and in addition, such
approaches are generally easily broken if they
miss a particular detail.

Question: One of your estimates of complexity relies
upon the inverse compression ratio. Isn’t that
based upon entropy rather than complexity?”

Answer: Yes, our initial complexity estimation tech-
nique relied on the inverse compression ratio.
This was chosen as a Kolmogorov estimator
because it appeared to be a low overhead and easy
to implement technique.

Question: Since there are such sloppy bounds associ-
ated with any estimate of K(x) isn’t the ability to
measure and utilize conservation of complexity a
pipe dream?”

Answer: Estimating Kolmogorov complexity is a chal-
lenge. Our current research is focused on finding
the best metrics and quantifying bounds associ-
ated with these metrics to determine the usability
of conservation of complexity to solve real prob-
lems. Our hypothesis is that beyond certain
thresholds abnormal behavior will be noticeable
using conservation of complexity.

10

2.1 SURVEY OF RELEVANT EXISTING
SECURITY TECHNIQUES AND THEORY

A fundamental basis for information security is elu-
sive. Numerous theories have come to light lately
that look for a fundamental basis for the study of
security systems. In this chapter we review some of
the more fundamental work in this area. We con-
clude this chapter with two analogies—to Thermo-
dynamics and to Electrical Engineering—that yield
an intuitively pleasing basis that we would like to
explore.

Bennett/Zurick
Physics of information has been studied for decades
with many interesting theoretical contributions by
Zurek et al.[117] and Bennet et al [99]. This body of
work identifies Kolmogorov Complexity as a basic
property inherent in the physics of information, and
strives to resolve actual physical laws of energy with
information laws. Quantum computing is a related
area. Our work applies many of the concepts intro-
duced by Bennet and Zurick into the Information
Security domain.

Harmon
Reference [24] describes a recently developed
model of information systems where the fundamen-
tal devices are processors, routers, memory compo-
nents and communication components that serve to
affect information in the form of modulated energy.
Assumptions and postulates are well laid out to pro-
vide possible future experimental validation of this
model. System complexity is defined as the number
of dependencies that exist between pieces of infor-
mation. Our approach differs from this approach in
that we will use the fundamental quantity of Kolmog-
orov Complexity as our basic building block.

Fisher Information
Reference [125] puts forth a unification of the laws
of physics and the statistical quantity known as
Fisher Information. This shares with our approach
the gravitation towards a fundamental parameter, in
this case Fisher Information, which applies locally to
specific data as opposed to general source distribu-
tions from which data are generated, as is the case
with Shannon entropy. Fisher information is defined
as follows:, where Λ is the likelihood function
described by: given Z, a set of observations and x, a
time invariant parameter measured by observation
set Z. A resolution of our approach to these results is
desired.

Current Security Techniques
Information security (or lack thereof) is too often
dealt with after security has been lost. Back doors are
opened, Trojan horses are placed, passwords are
guessed and firewalls are pierced—in general, secu-
rity is lost as barriers to hostile attackers are
breached and one is put in the undesirable position
of detecting and patching holes. In fact many holes
go undetected. Breaches in other complex systems
that people care about are not handled in such an
inept manner. Thermodynamic systems, for exam-
ple, can be assured of their integrity by the pressure,
heat or mass the system contains. Hydrostatic tests
can be performed to ensure that there are no
“holes,” and the general health of the system can be
ascertained by measuring certain parameters. A
problem is identified as soon as the temperature or
pressure drops, and immediately one can take action
to both correct the problem and to isolate other
areas of the system from harm. But how does one
perform a hydrostatic test of an information system?
What conserved parameters exist to measure the
health or vulnerability of the system? How can one
couple the daunting task of providing a system
where vulnerabilities are readily measurable with the
required need for simplicity of use for authorized
users? We explore these issues through various anal-
ogies and propose that only through monitoring
objective quantities inherently related to informa-
tion itself can the science of information assurance
move beyond patching holes.

Analogy to Thermodynamics
An attractive analogy for an information security sys-
tem is given in an analogy to thermodynamics. In
thermodynamic systems laws of conservation and
energy flow allow monitoring of the health of the
system through parameters such as temperature,
heat, and volume. One does not, for example, in a
thermodynamic system, wait for all the heat to drain
from a heat exchanger and a rat to come inside to
announce that there is a problem. One can tell from
parameters such as temperature and pressure that
the system is behaving abnormally. Concepts such as
entropy and mass map nicely to the information
security domain. Through our exploration of Kol-
mogorov Complexity, we pursue the analogy to ther-
modynamics.

Analogy to electrical engineering
Analogies have been drawn between basic electrical
engineering parameters, such as impedance, cur-

11

 2. Discussion

rent, and voltage, and infor mation assurance of an
information system. Electrical current could be com-
pared to information flow to dishonest participants.
High resistance or good insulation on an electrical
cable could represent a network with few holes.
Through sufficient mappings, some of which are
shown in Table 1, simplified models, parallels to
Norton and Thevenin equivalent circuits, could be
developed through simple measurements and trans-
formations. Additionally, the large body of work ded-
icated to detecting and protecting against electrical
faults and disturbances could provide some benefit
to the field of information assurance.

Here the information assurance potential is a mea-
sure of the ability of a system to defend or a perpe-
trator to intrude upon an information system. The
equivalent resistance of the system is determined by
considering and quantifying all of the possible sys-
tems (Figure 1). A distinction is made between
active networks [3] and today’s legacy, or passive net-
works, in this proposed electrical engineering para-
digm. The work involved in forwarding a packet,
whether active or passive is current that can cause a
node to do work, that is, current in a motor winding
that causes energy transfer in a different form. With
regard to active packets and information theory, pas-
sive data is simple Shannon compressed data, and
active packets are combination data and programs
whose efficiency can be estimated through Kolmog-
orov Complexity. Information assurance laws must
be able to deal with many alternative representations
of information. Section 3 discusses an electrical
engineering grid type of information assurance tool.

2.2 THE NETWORK INSECURITY PATH
ANALYSIS TOOL (NIPAT)

Consider a specific grid-based information assur-
ance tool known as the Network Insecurity Path
Analysis Tool (NIPAT). NIPAT is a powerful security
analysis tool developed at GE Global Research that
has been improved by the results of this project in
complexity-based vulnerability analysis. NIPAT
serves as a positive representation for grid-based
information assurance tools in general. Section 3.1
discusses their weaknesses. Figure 2 displays 2,000
vulnerabilities found on a few nodes of a network
that were thought to be reasonably secure. Vulnera-
bilities are displayed in Figure 2 by host and type.
The number along each edge of the graph repre-

Table 1 Electrical and information assurance
properties

Electrical property Security property

Current Data flow to or from dis-
honest participants

Voltage Information assurance
potential

Resistance Resistance to data flow to
dishonest participants

Inductance and capaci-
tance

These values follow by
direct insertion of above
analogies into electrical
definitions of inductance
and capacitance.

Figure 1. Electrical and Information Assurance
Properties.

Figure 2. A Grid-Based Tool in Action.

12

ystem

'' System
"Vector"

■ L^ Host B Vul 2

,|/ ^^^ J^-4f'.
T ^*^0; . ^^^-^^ Host A Vul 3

CjL^'^/r' 1 ^>5^^/\ '^°^' "^ ^"^ ^
^X ~~^V\r~~,^%^ /nj\ '^="•66 /i^

^'i" Host A Vul 2 / \ ^' 0 /^

A! .^y ^'^^
\ "Vector"^^^\ "^//^ / >^K K=1.0 ^^^

] ^"""'^^^HostCVutA Host B vul 1

"Attackei'

I File Algorithms Edit Properties

i: 222.5 i':-12E.O z: Q.O

U

2.2 The Network Insecurity Path Analysis Tool (NIPAT)

sents the number of opportunities available to the
attacker to reach the next vulnerability. NIPAT can
automatically generate a directed graph represent-
ing the security vulnerabilities of a network. This
information is gathered from network security soft-
ware agents. The security vulnerability graph for a
typical network can be extremely dense; however,
the object-oriented nature of the security model is
useful in choosing the level of abstraction required.
For example, it may be possible to display the vulner-
ability graph for Unix hosts in general and to hide
the details of individual Unix variants. NIPAT deter-
mines the degree to which specified targets within
the network can be compromised. The vulnerability
chain is displayed as a directed graph. Nodes repre-
sent vulnerabilities whose security may be compro-
mised, and edges represent paths from vulnerability
to vulnerability. The larger the value of the edge
label, the greater the vulnerability. The focus of this
effort is on the mathematical representation of
information assurance; thus, the underlying data-
base and data gathering agents are not discussed in
detail here. See Appendix C for more on the opera-
tion of the NIPAT tool.

The information assurance model assumed by
NIPAT is that of an attacker who has a finite amount
of resources with which to penetrate network secu-
rity. A resource vector for the attacker is assumed.
The cost to the attacker of using each of the
resources against a particular network is defined by
consumption functions. The cost to network security
of implementing security measures is defined by a k-
dimensional security function. The attacker’s
resource vector consists of the strength of each ele-
ment of the attacker’s resources. For example, the
password decryption resource value would consist of
the attacker’s CPU speed and amount of time the
attacker would be willing to spend on the attack.
The NFS spoofing resource value would be the time
to install and run the NFS spoofing software multi-
plied by the probability that the attacker has access
to such software. The host spoofing resource value
would be a function of the attacker’s ability to evade
the physical security of a network and install or mod-
ify a host IP address. The consumption function vec-
tor is the complement of the attacker’s resource
vector. For example, a network with good password
encryption algorithms or whose users use well-cho-
sen passwords will have a high value for the con-
sumption function for password decryption. Clearly,
attempting to define all possible security threats to

any system is a huge undertaking. However, the
scope of network security is confined to the security
object model. In this example, the following tech-
niques are assumed to be available to the attacker:
password decryption, NFS spoofing, hosts spoofing,
and application security faults. Password decryption
assumes the attacker has a program capable of
decrypting users’ passwords. NFS spoofing involves
violating security to mount another user’s file sys-
tem; host spoofing is causing a host to appear to the
network as a different host; and an application secu-
rity fault is taking advantage of an application-pro-
gramming fault in order to attack the security of a
system. Each of these resources is measured in units
of time. Thus, an attacker with a powerful computer
and a willingness to wait a long period of time to
break into a network will have a large password
decryption resource. An attacker with physical
access to the network and competent knowledge will
have a high host spoofing resource value because
such an attacker can physically connect a host to the
network. An attacker with much experience and
knowledge of applications will have a large applica-
tion security fault resource.

Another form of vulnerability analysis involves
detecting vulnerabilities that change over time. The
network monitoring tool quantifies the vulnerability
of a system in terms of percent of patches which fail
to have the correct signature, percent of files which
are accessible to others besides the owner, and per-
cent of passwords which can be guessed with a given
password generation tool. Clearly, vulnerability
checks such as these increase the security of the net-
work. Both the type of information gathered and the
frequency with which the information is updated
quantify the effectiveness of a network monitoring
strategy. If the information is not updated frequently
enough, an attacker may have penetrated network
security and left before network security is aware of
the situation. An estimate of the effectiveness of the
monitoring system is based on a profile of network
security attacks on the Internet and the following
parameters: time to monitor patches, Trojan horses,
passwords, and any other vulnerabilities. The attack
rate is assumed to be Poisson. The average attack
rate, based on Internet incident reports from an
anonymous site for a six-year period, is five attacks
per month. Also the Defense Information Systems
Agency has determined by experimental means
[107] that only 0.7% of incidents are actually
reported. Thus, for each path in the network secu-

13

 2. Discussion

rity vulnerability chain, the cost to the attacker is the
probability of being detected multiplied by the cost
function that the additional monitoring provides.

The following list describes the capabilities and
benefits that a vulnerability assessment tool could
provide: An automated network security assessment
tool should have the capability of automatically gen-
erating a directed graph of vulnerabilities. This
information can be gathered from network security
software agents. The security vulnerability graph for
a typical network can be extremely dense; however,
the object-oriented nature of the security model may
be useful in choosing the level of abstraction
required. For example, it may be possible to display
the vulnerability graph for Unix hosts in general and
to hide the details of individual Unix variants. The
network security vulnerability tool determines the
degree to which the network security can be com-
promised based on minimizing an objective function
that represents the cost to the attacker. Based on the
vulnerability graph, the optimal deployment loca-
tion and capability mix of the security agents is
determined. Note that this is closed feedback loop;
the security agents are sending information to the
security analysis tool, which controls the deployment
of the agents. The network security vulnerability
assessment tool should indicate the degradation in
the quality of service to legitimate network users as
security counter measures are taken as well as
dynamically indicate the security vulnerability of the
network. An object-oriented prototype network vul-
nerability analysis tool, NIPAT, which implements
most of the above requirements, has been imple-
mented using Java. The vulnerability chain is dis-
played as a directed graph. Nodes represent entities
whose security may be compromised, and paths rep-
resent the vulnerability of an entity. The larger the
value of the path label, the greater the vulnerability.

Mathematica [139] provides an ideal environ-
ment for experimenting with symbolic mathematical
concepts. The adjacency matrix, which represents
the vulnerability graph from NIPAT, can be read into
Mathematica. The directed, weighted adjacency
matrix is used to determine the shortest path
between every two nodes. The insecurity values can
be displayed as a contour map and a density plot,
where high areas in the topological view are secure,
and those lower are relatively less secure, as shown in
Figure 3 and Figure 4 for the system shown in
Figure 2.

As has already been mentioned, extant forms of
automated security vulnerability analyses rely on
polling, which becomes infeasible in large-scale net-
works and in highly dynamic environments. Other
approaches towards vulnerability analysis and intru-
sion detection need to be developed. There are two
independent research efforts that are leading
towards a mutually beneficial solution to the vulner-
ability assessment and network security problem.
These research efforts are the human biological
immune system approach to network security and
Active Networks [3]. Active networking implements
the cliché that “the network is the computer.” Active net-
working allows users of the computer communica-
tions network to inject programs into the network to
customize processing of user and application spe-
cific data. Thus, just as hormones control and regu-
late biological systems, active networks allow
programs to travel the network modifying security
behavior. The biological analog of intrusion detec-
tion is highly distributed. The advantage of a distrib-
uted intrusion detection system is that the
probability of detecting an intruder increases signifi-
cantly as the intruder is forced to pass through more
independently operated intrusion detection systems.
Biologically inspired forms of vulnerability quantifi-

Figure 3. Topographical Map of
Security.

Figure 4. Density Graph of Secu-
rity.

14

2.2 The Network Insecurity Path Analysis Tool (NIPAT)

cation would include injecting a network with a
harmless virus and measuring how far it can spread
throughout the network. This would clearly indicate
the location of vulnerabilities. A more aggressive
solution would involve “growing” many simple cells
(processes) in a closed computer environment.
These cells (processes) constantly mutate, repro-
duce when they successfully attack an intruder (non-
self), and die when they attack legitimate system and
user processes (self). Over time, by natural selection,
only useful processes will remain which can be
injected into a network and used to detect and
attack intruders. Clearly, active networking enables
new and more flexible security safeguards in addi-
tion to facilitating the development of the immuno-
logical approach towards network security.

A network security analyst can allocate security
safeguards in order to minimize the entire network
vulnerability, or to minimize the vulnerability from
known attack points to particular targets. A quick
study using NIPAT is presented. First, from a funda-
mental network vulnerability flow viewpoint, the
strategy of allocating safeguards in combinations of
serial and parallel strategies can be examined.
Figure shows NIPAT analyzing an attack from host A

to host B. In this case, the number of opportunities
has been normalized into probabilities. Figure 6
shows the results as security safeguards are removed.
The solid line is the vulnerability of a single connec-
tion from the attacker to the defender having the
same vulnerability flow as the links shown in Figure .
With a probability of less than 0.6 a diversity of vul-
nerability types helps to increase security, but inter-
estingly, above 0.6 it does not.

Let us assume that vulnerability has been calcu-
lated by NIPAT to be either the maximum insecurity
flow or probability of successful attack, where S rep-
resents security safeguards, C(S) is the cost of secu-
rity, and L is the cost constraint or some other hard
resource limit. Next we discuss the cost in terms of
impact on users; here it is strictly a financial cost or
other resource constraint. Objective Function 3.1
shows how the optimal security safeguard allocations
can be determined.

It is possible to use NIPAT to study various strate-
gies of both defensive and offensive players in a net-
work attack. Once an attack has been detected, the
network command and control center can respond
to the attack by repositioning security safeguards
and by modifying services used by the attacker. How-
ever, cutting-off services to the attacker also impacts
legitimate network users, and a careful balance must
be maintained between minimizing the threat from
the attack and maximizing service to customers. For
example, various stages of an attack are shown in
NIPAT in Figure 7 along the yellow path. Since the
allocation of security resources never changes
throughout the attack, the vulnerability of the target
increases significantly with each step of the attack.

Our proposed enhancement would be to incorpo-
rate the following algorithm into NIPAT. Let CS rep-
resent the network service to customers, with a
minimum accepted quality, Q. Let V(S,A) be the vul-
nerability of the network to a particular attacker, A.
Then Objective Function 3.2 shows the optimal net-
work response given the current state of the attack.

The results of this proposed research will include
a better understanding of how to respond to net-
work security attacks. In addition the existing NIPAT

Figure 5. An Example of Security Safe Guard Assumption.

Figure 6. Series versus Parallel Vulnerability Attack.

15

M
File Algorithms Edit Properties

«;-12G.O !■:-129.0 2:0.0

Y

Aj\ acker ^"^--^ "o

j
A_ObS(

g

[eterue

A_Sean:Kpii5tBot^_^^ ",•>

E_SLuijI

,l;..l 1 1

 2. Discussion

will be incorporated with new algorithms, serving as
experimental validation of the results from this
project.

Failure of the grid-based approach
The grid-based approach, limited to the capabilities
as previously discussed, has a considerable number
of shortcomings. The first is the inability of the grid-
based mechanisms, as presented above, to assign
meaningful initial values that represent either secu-
rity or insecurity. The current implementation of
NIPAT uses scalar values that represent the
“strength” of an attacker and the number of oppor-
tunities for an attacker to exploit a chain of a priori
identified vulnerabilities. The reasoning in the
development of NIPAT is that the strength of an
attacker is a representation of the attacker’s power
in terms of combined instructions per second,
advanced knowledge of the system under attack, and
skill in the use of attack strategies. It has been pro-
posed to augment NIPAT with vectors, where each
element represents an attacker’s strength in exploit-
ing various predefined vulnerabilities. However, this
assumes advanced knowledge of all possible vulnera-
bilities and the attacker’s strength in exploiting each
of those vulnerabilities. This is not a reasonable
assumption for a system of even low complexity.
Using a database, expert system, or object-oriented
abstraction, to handle aggregations of vulnerabilities
does not lead to a feasible solution because these
mechanisms require that all possible vulnerabilities
be known a priori. A more general vulnerability dis-
covery and quantification technique is necessary.

It is our belief that many such tools, such as
NIPAT, are salvageable as an information assurance

design tools. The good qualities of NIPAT, such as
safeguard optimization and likely attack path identi-
fication, particularly to lead an attacker to a fish-
bowl, are useful mechanisms for information
assurance design. To provide a brief preview of our
proposed solution for grid-based tools, consider the
resistance in the electronic circuit analogy of infor-
mation assurance as complexity where complexity
and resistance are directly proportional. The rela-
tionship among vulnerability, resistance, and com-
plexity is developed in more detail later in this
report. In Section 3.3 we look at the properties
required of a meaningful information assurance
metric.

Fundamental properties and parameters of
information
As discussed in the introduction, we desire to move
the study of information assurance to a fundamental
domain, where attacks need not be defined in
advance. But what are the fundamental properties of
information and how can we build upon them to
achieve a science for the assurance of this informa-
tion. We discuss below some basic properties of
information that are candidates for fundamental
parameters upon which to build.

Size—In his ground breaking 1949 paper, Shannon
introduces fundamental tradeoffs and limitations on
the ability to transmit information across a channel
disturbed by Additive White Gaussian noise (AWGN)
[98]. This launched the science of information the-
ory that has transformed the study of communica-
tions and coding of information, bringing the use of
the term “bit” of information, which Shannon cred-
its to J.W. Tuckey, into the mainstream literature.
The idea that information can be quantized into bits
(or sequences of yes or no answers to questions) is
now well accepted, and one measure of the size of
information is the number of bits used to convey the
information. Information compression coding –
both lossless and lossy– as well as forward error cor-
rection coding alter the size of the information in
terms of bits by removing or adding redundancy.
However, the unit of size, bits, is the term used to dis-
cuss the size of information, whether it is efficiently
coded or not, error prone or self-correcting. Thus,
while it is possible for information to change size
without altering content, size is a fundamental prop-
erty of information that should come into play
under a set of fundamental laws of information
assurance.

Figure 7. Various stages of attack.

16

File fligcrithms Edit Propertios

Mouse Acticn;

■K/Credte Nodes v^Create Edqei

^Select Nodes vSelect Edges

^Select Nodes or Edges

Viewing Offset

D
Center I

Scale; 1

Scale/2 Scale' 1 | Scaie - 2 |

Viewing Angles

Hofl'DVul

HostE ViilKiy / v9 UostCVuH HostBVull

i
HostCVull
i

Piano; XV X2 VZ

2.2 The Network Insecurity Path Analysis Tool (NIPAT)

Entropy—Shannon entropy [179] is a fundamental
property of information that measures the uncer-
tainty of a random variable X based on the probabili-
ties of each outcome:

Entropy therefore relates to a source distribution
of a random variable. Kolmogorov complexity is a
related parameter that will be discussed in detail
that relates to a specific sequence of information.
These two parameters are extremely powerful prop-
erties of information that occur at the most funda-
mental level.

Density, Mass or Energy—Density, mass and energy
are properties of matter that have parallel and intu-
itively pleasing meanings in the domain of informa-
tion. Density, like Kolmogorov Complexity, may
measure the ability of a sequence to be compressed.
Mass may simply represent the number of ones in a
sequence, and energy as in thermodynamics may tie
together quantities such as mass, density or entropy.
The overriding goal is to find parameters that can be
observed directly from the information sequences
themselves and compare objective quantities on
which to base the science of information assurance.

Towards complexity-based information
assurance
Beginning with a high-level view of the problem def-
inition, Figure 8 shows both secure manner of oper-

ation and insecure operation. Both manners of
operation exist in the space of all possible forms of
operation, M. Insecure operation, MI, consists of
those methods of operation that allow an informa-
tion warfare aggressor entrance or access to control
points into the information system. The intended
secure operation areas MS are well known, and some
of the insecure paths are also known. Note that MS
and MI can, and usually do, overlap. However, the
entire area of operation can be extremely large and
an exhaustive search for all insecure operation is not

feasible. In Figure 8, Euclidean distance corre-
sponds to the degree of security. This leads one to
consider a metric space upon which to base informa-
tion assurance. The initial approach assumes only
that the metric has the characteristics of a metric in
the mathematical sense as shown in Definition 3.1
where d is distance and p and q are points. Point p
and point q have not been explicitly defined. As illus-
trated in the left side of Figure 8, an information sys-
tem de-composed into many operating components
could have a surface area as shown on the right side
of Figure 8. Note that this surface is likely to change
as a function of time; however, the time indices are
not written for now. The points p and q are assumed
to be relative to some absolute value; p and q can be
security values in either different locations or at dif-
ferent time instances of the system. If d is a measure
of security, then Definition 3.1 implies that there is
no difference in security between the same point
and itself; however, there must be a difference
between any two distinct points in the security space.
Definition 3.1 states that the measure between any
two points in this space should be the same regard-
less of the order in which one takes the measure-
ment. This means that, observed from a common
vantage point, if security is measured at two different
points in this space, p and q, then the measure of
security will be the same regardless of the order in
which the points are entered in the measure. It does
not imply anything about the strength of an attack
from p to q or an attack from q to p. It means, for
example, that if p is less than q, then an attack from
outside the system against p will be more likely to
succeed than an attack against q. Finally, Definition
3.1 states that the distance between any two points
will be less than or equal to the sum of the distances
between each of those points and a common third
point. Again, remember that this is a measure of
security taken from a view outside the system of a
potential attack from outside the system. As dis-
cussed in more detail in the remainder of this
report, the actual measure will change as an attacker
penetrates the system and as the attacker gains more
knowledge of the system.

In Figure 3 and Figure 4 a topographical and
density plot shows the security of the system in
Figure 2. These graphs are only suggested means of
viewing information assurance, not a recommenda-
tion. Summing the attack strength at each node
from all other nodes generates the graphs. Thus, the
topology, or density, is the vulnerability of a particu-

Figure 8. Set Theory View of Secure Operation.

17

Areas of [M i
unknown

operations

M I = Insecure Operaiions

M s = Secure Operations

 2. Discussion

lar area of the graph to all attacks. The light areas in
the density plot and the higher areas in the topology
map are areas of low vulnerability, while the darker
areas or lower areas on the topology map are areas
that are well secured. Remember that these are
graphs of known vulnerabilities and the likelihood
that they will be penetrated. The problem with these
graphs is two-fold: what is the metric used to obtain
the insecurity for each vulnerability, and how can it
be assured that all vulnerabilities have been
included in the graphs? Maps such as these require
that Definition 3.1 must be satisfied.

Information assurance via set theory and
complexity
If information assurance can be proven to reside in a
metric space, or alternatively, if a metric space can
be chosen in which information assurance can
reside, then principles of mathematical analysis
[100] can be used to rigorously determine more
detailed characteristics. For example, M can be
extremely large, possibly infinite. Are MS, or con-
versely, MI, open sets? If so, can limit points be
defined? What does an open set mean with regards
to information assurance and security? As a simple
example, consider a password protection system.
Each character that a legitimate user of the system
adds to a password increases the number of possibili-
ties that a brute force (non-dictionary) attack would
require in order to guess the password. Thus, the
longer the password, the more secure the system.
While an infinite length password is not possible, the
security does begin to approach a limit point. This
can also be seen, for example, in any security safe-
guard that works via the addition of complexity (that
is, adding more states to the Turing Machine to
increase security). This approach towards safeguard
design approaches a limit point but can never reach
perfect security. However, in general, this appears to
be the only known approach, and thus limit points
must exist. Assurance is usually increased by increas-
ing the apparent complexity of access to potential
attackers while providing legitimate users the appar-
ent, least complex, or in some sense, shortest, path
to access of information. The complexity approach
is carried forward in more detail in Section 6.

Topological space for information assurance
By definition, an open set, E, is one in which every
point is an interior point. A point, p, is an interior
point of E if there is a neighborhood, N, of p such
that. A neighborhood Nr(p) of point p consists of all

points q such that where r is called the radius of the
neighborhood. If security, as determined by a given
metric, is an open set, then there are significant
implications because of this. The best that can be
hoped for in such a case is to determine limit points
because a distinct boundary between security and
insecurity would not exist. Will it be the case that
adding layers of security is much like adding “open
covers”; that is, the result can never be perfect secu-
rity, but rather an approach to a limit point? The
complement of an open set is closed; what does that
imply for assessment of insecurity? NIPAT takes both
probabilistic and maximum flow approaches to com-
puting network insecurity flows. This tool is incom-
plete for at least two reasons: it assumes that all
vulnerabilities have been identified and measured
and that the vulnerabilities can be manipulated as
discrete, closed sets. In order to determine whether
such measurements can be applied to information
assurance, consider topology, metric spaces, and the
fundamentals of measurement theory in more
detail. The definition below shows how the topology
is induced by a metric d.

In the definition above is a collection of subsets of
such that and, any finite intersection of members of
is in, and any union of members of is in. For pur-
poses of removing unnecessary detail, assume that
the information system is a Turing Machine. Also
assume that the vulnerability analysis tool in [43] dis-
plays vulnerabilities within the Turing Machine.
Lemma 3.1 illustrates the topology that will be
induced.

The intuitive notion is that d represents the ease
of movement of an intruder from one vulnerability
to another, where : . A simple met-
ric, as discussed previously, is to define d as the num-
ber of state/transition sequences within a Turing
Machine representation of a system which an
intruder can follow to move from vulnerability x to
vulnerability y, or equivalently, the cardinality of the
set of V from Definition 3.1. In this induced metric
space, the NIPAT vulnerability tool can be consid-
ered an overlay of the Turing Machine representa-
tion of the system. The NIPAT tool filters out the
state and transition details and shows only the direct
connection among the vulnerabilities. Does infor-
mation assurance reside within this metric space?
One test would be whether the metric supports the
design tradeoffs required in determining brittleness
in the design of the system. To answer the above

d x y,() X X× ℜ→

18

2.3 An Information Assurance Model

question, let be the set of currently exploited
vulnerabilities. Most information security
approaches, including the one above, assume that
all vulnerabilities have been discovered and mea-
sured. This can never be assumed to be the case. Per-
formance, , from Definition 6.1 is an open set, and
as new security holes are discovered, . If V

represents vulnerability and is open, then secure

operation, , is closed. Assume that

for any . Note that x is now an

element of the set of secure operation. In other
words, the number of secure operations is bounded.
It is well known that a set is compact if and only if it
is closed and bounded. Next, Section 4 takes a closer
look at a model for Information Assurance upon
which our new metric is based.

2.3 AN INFORMATION ASSURANCE MODEL
In order to develop a reference and working model
for our exploration into the fundamentals of cyber-
security and cyber-physics, a Turing Machine [110]is
used to characterize system operation. The Turing
Machine is one of the most fundamental general
computing abstractions and is well-known in com-
puter science. It has a rich theory of its own that this
report intends to utilize to its advantage. The Turing
Machine consists of a seven-tuple (Q, T, I, δ, b, q0, qf).
Q is a set of states, T is a set of tape symbols, I is a set
of input symbols, b is a blank, q0 is the initial state, qf
is the final state. δ is the next move function. δ maps
a subset of Q × Tk to Q × (T × {L, R, S})k. L,R, and S
indicate movement of the tape to the left, right, or
stationary respectively. There can be multiple tapes.
Thus δ implements a “next move” function. Given a
current state and tape symbol, δ specifies the next
state, the new symbol to be written on the tape, and
the direction to move the tape. The sets of symbols
that lead to an accepting state (qf) is the input lan-
guage (∑). One approach to the study of security is
to consider the Turing Machine representing nor-
mal operation of an information system. In such an
approach, if the Turing Machine recognizes, or
accepts, an input language, then a user has gained
access to the system. If the Turing Machine accepts a
language that we did not anticipate (∑I), then the
system is vulnerable, as stated in Hypothesis 4.1.

Clearly, the Turing Machine is an abstract repre-
sentation of any protocol implementation, or oper-
ating component operation. The set of
unanticipated input languages that is accepted is the
vulnerability of the component, V, as shown in Defi-
nition 4.1. This is illustrated in an existing tool GE
Research has developed [43]which displays system
vulnerabilities from a Unix operating system run-
ning Internet Protocol data communications. This
work requires a definition of security, shown in Defi-
nition 4.1. Our use of a metric space requires us to
prove Definition 3.1 holds.

In order to make the problem of quantifying
assurance tractable, consider the fundamental assur-
ance characteristics of an individual Turing
Machine. Assume all internal operations are per-
fectly secure. This follows from [110] in which Tur-
ing notes that machine operations are atomic.1 It is
assumed also that reading, writing, tape control, and
state control cannot be observed, modified, or inter-
fered with in any manner. The only effect upon the
system is the input language. A malicious input lan-
guage, given a single Turing Machine, can cause
denial of service simply by never halting. Also it is
assumed that the output tape is accessible to the
world. Thus a malicious input language could write
secret information to the output tape. What hap-
pens with multiple users each with their own regu-
lated data access?

Another objective of an attack may be to deter-
mine the function performed by the Turing
Machine. In this case the attacker is assumed to have
the ability to enter every member of the input lan-
guage in order to deduce operation by viewing the
output. The attacker is actually deducing δ. Deduc-
ing process versus data is described from a complex-
ity viewpoint in more detail in Section 6.3. A Trojan
horse is implemented either by allowing an attacker
access to modify another user’s input tape, or per-
haps δ of the machine itself.

Given a network of Turing Machines, in which
one machine’s input is the output of another
machine, an input language could be self-replicat-
ing, that is, a virus. However, Turing Machines are
composable. A single machine with additional states
can implement any set of Turing Machines. This
implies that a state-based approach should be taken
in the analysis of assurance. For example, is state qx
more or less secure that state qy? How can this com-

A V⊂

α

α A
lim A ∞→

V
sup

x V∈
d x x0,() ∞< x0

1. In [110], Turing casually notes the symbols on the machine’s tape can form a conditionally compact space.

19

 2. Discussion

parison be made within a single Turing Machine? Is
the state on a path that leads to an insecure event?
An individual state by itself does not reveal much
about the current assurance level. However, a set of
states, considered along a continuum, provides
much more information. Can a gradient be estab-
lished that leads to the likelihood of an insecure
event? Such a gradient requires a well-defined met-
ric, which is what this work is leading towards. One
approach towards computing vulnerability would
require checking every possible input language in
order to quantify relative insecurity levels. This is
obviously an intractable approach. This problem is
tackled by means of complexity in Section 6.

In order to begin to understand how information
assurance can be quantified, consider the manner in
which systems that implement information assur-
ance can be designed. Design involves the tradeoff
of one benefit for another. Brittle Systems provide a
framework for understanding the tradeoffs in per-
formance versus failure of information systems. Brit-
tle systems analysis [108] is based on the idea that
systems can fail in a manner analogous to brittle
fracture. A system can maintain very high perfor-
mance until it fails quickly and catastrophically, as
illustrated by performance curve Ph Figure 9 or sys-

tems may fail by exhibiting lower performance in a
gradual, more ductile manner as in curve Pl. The
mapping between Brittle Systems Theory and infor-
mation assurance is shown in Table 2. This analysis
can be directly applied to the Turing Machine.
Changes in any of the state machine parameters, Q,
T, I, δ, b, q0, qf, may modify the brittleness of the sys-
tem. For example, addition of a new state and transi-
tion could cause the system to behave in a more
ductile or brittle manner. What is the measure of
performance in a Turing Machine model of infor-
mation assurance? What does catastrophic failure
mean in a Turing Machine model of information
assurance? Performance is α from Definition 5.2

and X is measured related to attacker effort. The
answers to the above questions are intimately linked
to the choice of metric. Based on Definition 3.1 dis-
cussed previously, one could choose the metric to be
the number of state/transition paths available to an
attacker to reach a particular target state, or equiva-
lently, the cardinality of the set of languages, V, given
in Definition 3.1. Another possible metric could be
the proximity of the attacker’s current state to the
target state. Various other complex metrics could be
contrived such as ones that include the work
involved for an attacker to move from one state to
another. These complexity metrics are based upon a
known attacker at a given state. If a single measure-
ment is required to describe the performance of the
information assurance system, then values generated
by the choice of metric must be combined in a rea-
sonable manner. However, a single value is not
meaningful in the same way that capacity would be
useful in determining load, unless there were a
meaningful attacker strength with which to operate.
Next, in Section 5, more detail on Brittle Systems
and how they relate to a new information assurance
metric are discussed.

2.4 BRITTLE SYSTEMS, DETERMINISTIC
FINITE AUTOMATA, AND
VULNERABILITIES

A Deterministic Finite Automaton (DFA) consists of
a 5-tuple (S, I, δ, s0, F) where S is the set of states, I is
the input alphabet, δ is a mapping from into I, s0 is
the start state, and F is a subset of S called the final,
or accepting states. A DFA is less powerful than a
Turing Machine in terms of the languages it can rec-
ognize as well as less capability in performance of
general computation. However, DFA have been well
studied and facilitates a framework in which new
theories related to Information Assurance can be
studied. An example of Brittle Systems using Defini-
tion 3.1 for vulnerability is illustrated for the DFA
shown in Figure 10. A single vulnerability is repre-
sented as a single modified transition. The modified
transition represents an error in either the design or
implementation that allows an attacker to penetrate
the system. The effect of each transition modified
from its original source node to each possible desti-
nation node in the automaton is exhaustively
checked. The effort expended by an attacker is
assumed to be proportional to the length of the
strings used in the language. P = α (Definition 5.2)
and X is the effort of an attacker measured in terms

Figure 9. Definition of Brittleness.

20

2.4 Brittle systems, deterministic finite automata, and vulnerabilities

of language size required to reach an unintended
accepting state. The algorithm requires starting with

the actual system as represented in Figure 10, modi-
fying a transition and then recording the number of
additional strings accepted. This is repeated for each
transition in the base system. As shown in Figure 11,

a modification of the transition from State 7,
Input 3, Destination State 2, (7,3,2) yields a small
number of vulnerabilities at string length two with a

Table 2 Brittle System Definitions

Materials Science Brittle Systems Information Assurance

Stress Amount parameter exceeds its tolerance

Applied force under the
weight of an

attack Toughness

System robustness Encryption strength and sensitivity of
intrusion detectors

Ductility

Level of Performance out-
side

Tolerance Ability of system to gracefully degrade given
an attack

Plastic Strain Degradation from which the system cannot recover

Trojan horse Brittle Fracture Sudden steep decline in

performance Sudden catastrophic collapse of all
information assurance

Young’s Modulus

Amount tolerance exceeded
over degradation

Deformation

Degradation in performance The amount by which vulnerability has been increased due to an attack

Brittleness Ratio of hardness to ductility

Ductile Fracture Graceful degradation in performance Ability of information to gracefully degrade
under an attack

Reversible Strain Degradation from which the system
can recover

Trojan horse detection and removal

Hardness Level of performance within tolerance
limits

Resistance to decryption

Figure 10. Example of Deterministic Finite Au-
tomation.

Figure 11. Ductile Vulnerability.

21

Accepted Strings vs. Language Size

1000

800

600

400

200

 2. Discussion

maximum of 1000 vulnerabilities at string length 8.
This performance is ductile compared to the graph
shown in Figure 12, where transition (1,3,1) is modi-

fied. Figure 12 shows more brittle behavior because
it takes a longer string length, thus more effort by
the attacker to find vulnerabilities; however, the vul-
nerability increases rapidly as the string length
increases. A more precise definition of Brittleness is
given in Definition 5.1. The discrete form of brittle-
ness is accomplished by normalizing the sum of the
number of strings accepted of systems A and B to be
the same, then summing the value where B exceeds
A as in the left side of Figure 13.

Building upon Definitions 3.1 and 3.2 requires
that Turing Machine states, Q, be identified as either
secure or insecure. If an attacker can reach a mem-
ber of qinsecure then the attacker is considered to
have performed a successful attack. If an attacker
can never reach a member of qinsecure then the sys-
tem is considered invulnerable. The challenge is
that neither the attacker nor the defender knows the
entire structure of the Turing Machine’s program
because the attacker is unlikely to have complete
knowledge of the defender’s system and because
even the defender may not fully understand the sys-
tem that was developed. The unknown behavior of a

system is discussed later in terms of Apparent Com-
plexity in Section 6.5.

Definition 5.3 provides a means for easily comput-
ing complexity in the world of finite automata. Next
the relationship between brittleness and complexity
is addressed. One might intuit that a faulty transition
in a less complex automaton will have less of an
impact than a faulty transition in a complex version
of the equivalent automaton. The definition of
equivalent automata is given in Definition 5.4.

The simplicity, intended to be the opposite of
complexity, is given in Definition 5.5 as the differ-
ence in size between the current implementation of
an automaton and its minimized size.

A simple implementation of an automaton has
more transitions and states than necessary to imple-
ment the automaton. Thus, there is more opportu-
nity for an attacker to find a weak point in the
system. However, once an attacker breaks into a sim-
ple system, there will be, on average, more energy,
that is, longer string length, required to reach the
attacker’s destination. Thus, greater simplicity
should imply reduced brittleness (Hypothesis 5.1).

Figure 14 and Figure 15 show a simple and com-

plex implementation, respectively, of the same arbi-
trary information system. Figure 14, as a simple
implementation, is what might be intuitively
referred to as an inefficient implementation, with
many more states than necessary. This yields the
opportunity for more vulnerabilities and faults.
However, it also takes the attacker more effort to

Figure 12. Brittle Vulnerability.

Figure 13. Definition of Brittleness.

Figure 14. A Simple DFA.

22

Accepted Strings vs. Language Size

2.4 Brittle systems, deterministic finite automata, and vulnerabilities

reach a given target. Figure 15 is a closer representa-
tion of the true complexity of the same system. It has
fewer opportunities for failure; however, the failures
that occur will be more significant.

In Figure 16 and Figure 17, brittleness and com-

plexity are compared. Brittleness is computed as
defined in Definition 5.1. Performance is defined
based upon the number of accepted strings and lan-
guage size. The ratio of the number of accepted
strings to total language size is inversely propor-
tional to the performance. For each possible fault,
this ratio is compared to a consistent base case con-
sisting of an exponentially growing number of
accepted words as the language size increases. A brit-
tle system accepts few words initially, then suddenly
accepts a large number, while a ductile system
accepts a moderate, but gradually increasing num-

ber with no sudden increase. The brittle measure is
graphed as a function of a fault in the state specified
on the dependent axis. A fault is the disappearance
of a state that results in the direct connection of a
transition to the destination nodes of the faulty
node. Complexity is estimated as the number of
transitions in the smallest representation of the
resulting faulty system. Comparing Figure 16 and
Figure 17, there appears to be an opposite relation-
ship between brittleness and complexity. That is, a
system with greater complexity results in lower brit-
tleness. Greater complexity indicates a larger num-
ber of transitions and states exist, thus there is more
opportunity for an attack, but more effort is
required by the attacker to successfully complete the
attack. In Figure 18 and Figure 19 a similar analysis

is performed on the more compact, or truer repre-
sentation of the complexity, of the same system.
Notice that the system with an implementation that
is closer to its true complexity is much more brittle.
Also, note that the inverse relationship between

Figure 15. Complex Version of the DFA Shown
in Figure 14.

Figure 16. Brittle Measure of DFA Shown in Figure 14.

Figure 17. Complexity of DFA Shown in Figure 14.

Figure 18. Brittle Measure of System Shown in Figure 14.

23

Density vs. Fault Location

12 3 4 5 6 7 9 10 11 12 13 14 15

800

600

400

200

Brittleness vs. Fault Location

.1 I .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 2. Discussion

complexity and brittleness holds in the more com-
plex system as well.

An important result in this exploration of the
relationship among vulnerability, complexity, and
brittleness is that the larger the system, in terms of
the number of transitions and states, the lower its
brittleness. This suggests that larger systems, requir-
ing traversal of larger numbers of states and transi-
tions to reach an accepting state, or attack target,
require more effort to successfully attack. A system
that has a large amount of inherent complexity can-
not be made any more compact than its Kolmogorov
Complexity, which is discussed later. An intelligent
attacker may be able to observe an inefficiently
implemented system and reduce it to its most com-
pact form, that is, its Kolmogorov Complexity, thus
easily identifying paths of attack to reach specific tar-
gets. A truly safe system is thus obtained, not by
building inefficiency in the system, but rather, by
making the view to the attacker as inherently com-
plex as possible.

2.5 KOLMOGOROV COMPLEXITY
Information must be accessible to legitimate

users while access is denied to potential attackers.
This is done by increasing the apparent complexity
of access to information and by providing legitimate
users with enough a priori knowledge to reduce the
apparent complexity. This leads one to conclude
that complexity itself would be a useful metric for
Information Assurance. However, the search for an
absolute measure of complexity is a problem that
may be equally as hard as quantifying Information
Assurance itself. There is a good reason for this; they
are, in a sense, one and the same thing. To show this,

begin with the definition of complexity. Kolmogorov
complexity is a measure of descriptive complexity
that refers to the minimum length of a program
such that a universal computer can generate a spe-
cific sequence. Kolmogorov complexity is described
in Definition 6.1, where ϕ represents a universal
computer, p represents a program, and x represents
a string. Universal computers can be equated
through programs of constant length; thus a map-
ping can be made between universal computers of
different types.

Kolmogorov Complexity is proposed as a funda-
mental property of information that has properties
of conservation that may be exploited to provide
information assurance. In this report, Kolmogorov
Complexity is reviewed and current work in this area
explored for possible applications in providing
information assurance. The concept of Minimum
Message Length is explored and applied to informa-
tion assurance, yielding examples of possible bene-
fits for system optimization as well as security that
can be achieved through the use of Kolmogorov
Complexity based ideas. Finally, complexity based
vulnerability analysis is demonstrated through simu-
lation in Section 9.

Currently information security is achieved
through the use of multiple techniques to prevent
unauthorized use. Encryption, authentication/pass-
word protection, and policies all provide some level
of security against unauthorized use. But other than
simply relying on these secure barriers, how does
one measure the health of a security system. If a
password or encryption key is compromised, what
indication will be available? The degree to which a
system is compromised is difficult to ascertain. For
example, if one password has been guessed, or two
encryption keys determined, how secure is the infor-
mation system? Are all detectable security issues
equal, or are some more important than others?
These difficulties reflect the fact that there is no
objective, fundamental set of parameters that can be
evaluated to determine if security is maintained.
Insecurity may not be detected until an absurd result
(rat in a tank) discloses the presence of an attacker.
An inherent property of information itself is desired
that can be monitored to ensure the security of an
information system. The descriptive complexity of
the information itself – the Kolmogorov Complexity
– is a strong candidate for this purpose.

Figure 19. Complexity Measure of System Shown in
Figure 14.

24

2.5 Kolmogorov Complexity

Complexity and vulnerability in information
assurance
Progress in information assurance cannot proceed
without fundamental measures. Measurement
requires that information assurance be identified
and quantified. In order to make progress towards
this goal the results of a study in the evolution of the
complexity of information are presented. An under-
lying definition of information security is hypothe-
sized based upon attacker and defender as
reasoning entities, capable of innovation. This leads
to a study of the evolution of complexity in an infor-
mation system and the effects of the environment
upon the evolution of information complexity.
Understanding the evolution of complexity in a sys-
tem enables a better understanding of where to mea-
sure and how to quantify vulnerability and should
lead towards a calculus of information system com-
plexity. Finally, the design of the tool under con-
struction for automated measurement of
information assurance, used to gather and analyze
the complexity data in this report, is presented. The
motivation for complexity-based vulnerability analy-
sis comes from the fact that complexity is a funda-
mental property of information. If the interaction of
information complexity with its environment can be
understood, then a new understanding of informa-
tion assurance may be possible, one in which assur-
ance can be better understood and measured.
Quantification is necessary because tools have been
developed to measure and analyze security assuming
that rigorously defined security metrics exist. Unfor-
tunately, such metrics do not yet exist.

One method for examining information assur-
ance is to consider its converse, insecurity and vul-
nerability. Vulnerability analysis tools today require
types of vulnerabilities to be known a priori. This is
unacceptable, but understandable given the chal-
lenge of finding all potential vulnerabilities in a sys-
tem. Information assurance is a hard problem in
part because it involves the application of the scien-
tific method by a defender to determine a means of
evaluating and thwarting the scientific method
applied by an attacker. This self-reference of scien-
tific methods would seem to imply a non-halting
cycle of hypothesis and experimental validation
being applied by both offensive and defensive enti-
ties. Information assurance depends upon the ability
to discover the relationships governing this cycle
and then quantify and measure the progress made

by both an attacker and defender. This work
attempts to lay the foundation for quantifying infor-
mation assurance in such an environment of escalat-
ing knowledge and innovation.

Any vulnerability analysis technique for informa-
tion assurance must account for the innovation of an
attacker. Such a metric was suggested about 700
years ago by William of Occam [94]. Occam’s Razor
has been the basis of much of this invention and the
complexity-based vulnerability method to be pre-
sented. The salient point of Occam’s Razor and
complexity-based vulnerability analysis is that the
better one understands a phenomenon, the more
concisely the phenomenon can be described. This is
the essence of the goal of science: to develop theo-
ries that require a minimal amount of information.
Ideally, all the knowledge required to describe a
phenomenon can be algorithmically contained in
formulae, and formulae that are larger than neces-
sary indicate lack of a full understanding of a phe-
nomenon. The working hypothesis in this report is
that vulnerabilities are locations of low complexity.

Next consider the attacker as a scientist trying to
learn more about his environment. In this case, the
environment is an Information System. The attacker
as scientist will generate hypotheses and theorems.
Theorems are attempts to increase understanding of
the universe by assigning a cause to an event, rather
than assuming all events are random. From [94]and
Definition 5.1 above, if x is of length l(x), then a the-
orem of length l(m), where l(m) is much less than
l(x), is not only much more compact, but also 2l(x)-
l(m) times more likely to be the actual cause than
pure chance. Thus, the lower the complexity of the
theorem, as stated by Occam’s Razor, the more likely
the theorem is to be correct.

Consider Figure 1 and Figure 2and notice how
one intuitively views current as an attacker’s strength
and voltage differential as the desire or pressure of
an attack upon a system. Resistance is intuitively
viewed as the ability of the system to block an attack.
Thus, following this intuition, one can view vulnera-
bility as inversely proportional to resistance and
directly proportional to the complexity of the system
as viewed by an attacker. Capacitance and induc-
tance might be intuitively viewed as relating to the
brittleness of the system. Brittle Systems analysis is
discussed later; however, it relates to the tradeoff in
performance and degradation of a system. This intu-
ition is captured in Hypothesis 6.1.

25

 2. Discussion

This hypothesis is significant because it sets the
direction of our efforts and determines the funda-
mental basis upon which the remaining work rests.
As the attacker is refining the theorems (that is,
reducing their complexity), the defender is attempt-
ing to raise their complexity, while still maintaining
(low complexity) access for legitimate users. Thus
there is an ever-increasing cycle of complexity (see
Figure 20). It is as though while a scientist studies

natural phenomenon, nature actively tries to hide its
true internal operation through the addition of
more complexity.

Kolmogorov Complexity is a measure of descrip-
tive complexity contained in an object. It refers to
the minimum length of a program such that a uni-
versal computer can generate a specific sequence. A
good introduction to Kolmogorov Complexity is
contained in [118] with a solid treatment in [97].
Kolmogorov Complexity is related to Shannon
entropy, in that the expected value of K(x) for a ran-
dom sequence is approximately the entropy of the
source distribution for the process generating the
sequence [118]. However, Kolmogorov Complexity
differs from entropy in that it relates to the specific
string being considered rather than the source dis-
tribution. Kolmogorov Complexity can be described
as follows:

Random strings have rather high Kolmogorov
Complexity – on the order of their length – as pat-
terns cannot be discerned to reduce the size of a
program generating such a string. On the other
hand, strings with a large amount of structure have
fairly low complexity. Universal computers can be
equated through programs of constant length; thus
a mapping can be made between universal comput-
ers of different types, and the Kolmogorov Complex-

ity of a given string on two computers differs by
known or determinable constants. The Kolmogorov
Complexity K(y|x) of a string y given string x as input
is described by Definition 6.2: where l(p) represents
program length p and ϕ is a particular universal
computer under consideration. Thus, knowledge or
input of a string x may reduce the complexity or pro-
gram size necessary to produce a new string y.

The major difficulty with Kolmogorov Complexity
is that it cannot be computed. Any program that
produces a given string is an upper bound on the
Kolmogorov Complexity for this string, but the
lower bound [97] cannot be computed. A best esti-
mate of Kolmogorov Complexity may be useful in
determining and providing Information Assurance
due to links between Kolmogorov Complexity and
information security that will be discussed later. Vari-
ous estimates have been considered, including com-
pressibility, or pseudo-randomness, which measure
the degree to which strings have patterns or struc-
ture. A new metric that is related to the power spec-
tral density of the sequence auto-correlation is
introduced in a later section. However, all metrics
are at best crude estimates. The inability to compute
Kolmogorov Complexity persists as the major imped-
iment to widespread utilization.

Despite the problems with measurement, Kol-
mogorov Complexity and information assurance are
related in many ways. Cryptography, for example
attempts to take strings that have structure and
make them appear randomly. The quality of a cryp-
tographic system is related to the system’s ability to
raise the apparent complexity of the string, an idea
discussed in detail later, while keeping the actual
complexity of the string relatively the same (within
the bounds of the encryption algorithm). In other
words, cryptography achieves its purpose by making
a string appear to have a high Kolmogorov Com-
plexity through the use of a difficult or impossible to
guess algorithm or key. Security vulnerabilities may
also be analyzed from the viewpoint of Kolmogorov
Complexity. One can even relate insecurity funda-
mentally to the incomputability of Kolmogorov
Complexity and show why security vulnerabilities
exist in a network. Vulnerabilities can be thought of
as the identification of methods to accomplish tasks
on an information system that are easier than
intended by the system designer. Essentially the
designer intends for something to be hard for an
unauthorized user and the attacker identifies an eas-
ier way of accomplishing this task. Measuring and

Figure 20. Evolution of Complexity Caused by Attack and De-
fense.

26

2.5 Kolmogorov Complexity

keeping track of a metric for Kolmogorov Complex-
ity in an information system provides a method to
detect such short-circuiting of the intended process.
Note that the definition of complexity rests upon
the notion of the Turing Machine, which is also the
basis of our information assurance model. One
direction in this research is to combine the defini-
tion of complexity with the definition of vulnerabil-
ity in a fundamental manner. This has been done
using Brittle Systems and Hypothesis 6.1. Next, Sec-
tion 6.2 examines estimates of Kolmogorov Com-
plexity.

Measures of information complexity
This section looks at proposed estimates of Kolmog-
orov Complexity. The microscopic approach to the
study of information complexity evolution begins by
considering the change in complexity of a single
interaction. Later this report expands the results to a
larger scale and discusses the results. However, in
order to make the problem of estimating complexity
tractable, two approaches are used. The first
approach is based upon Finite Automata. A Finite
Automata whose smallest accepted string is the bit-
string whose complexity is to be determined, shown
in Definition 6.3, is minimized using techniques
such as [79,80] where L(FA) is the set of languages
accepted by the automaton FA and l(FA) is its size.

Figure 21 illustrates the uncompressed represen-

tation of an arbitrary bit-string, 1012. This automa-
ton accepts many other bit-strings in addition to
1012; however, the size of the minimized automaton
that accepts that bit-string, based upon the number

of transitions, for example, is an estimate of the
complexity of 1012. Thus, minimizing 1012 also min-
imizes other bit-strings such as those formed by the
regular expression 0*1+0+12 where the * indicates
zero or more of the preceding symbol and + indi-
cates one or more of the preceding symbol. How-
ever, 1012 is the smallest string accepted by the
automaton.

The Mathematica function UnionAutomata
returns an Automaton that is the union of two
automata. Notice that the complexity of the union
of two automata is less than the sum of the complex-
ity of each automaton as shown in Figure 22,

graphed as a function of bit-strings representing the
base ten integers from 1 to 50. This validates a
known theorem from complexity theory discussed
next, namely, that the resulting bit-string complexity
from a program is less than or equal to the sum of
the complexity of the input bit-strings, the length of
the program, and a constant. The complexity of the
combined bit-strings should be less than the sum of
the automata complexities plus a constant that is
dependent upon the size of the Universal Turing
Machine, sometimes expressed as H(X Y) ≤ H(X) +
H(Y) + c where H() is the size of the smallest pro-
gram capable of computing a specified result.
Another way in which to view individual or micro-
scopic interaction is to consider that if a program p
of length L(p) takes input string x to produce output
string y, that is, y = p(x), then Definition 6.4 defines
the microscopic change in complexity where K is the
Kolmogorov Complexity and c depends upon the
underlying Universal Turing Machine [137].

Another approach for estimating complexity used
in this report is based upon compression. The

Figure 21. Finite Automation Representation of 1012-.

Figure 22. Complexity of Union of Automata versus Sum of
Complexities.

27

 2. Discussion

inverse compression ratio, the ratio of the com-
pressed size to the original length, is used as an esti-
mate of the complexity. A highly complex bit-string
cannot be compressed as much as a low complexity
bit-string. A plot of automata-based complexity ver-
sus compression-based complexity is shown in
Figure 23. The compression formulae used is where

H() is the entropy, n is the bit string length, w is the
number of one bits, and c is the size in bits needed
represent the length of the bit-string. Clearly, the
compression-based mechanism provides a more
accurate measure of complexity in the Kolmogorov
sense; however, the automata-based mechanism has
advantages in that automata provide a simplified
and convenient mechanism for reasoning about
computation at the microscopic level.

As previously discussed, due to its non-comput-
able nature, estimates of K(x) are difficult. Numer-
ous techniques for estimating K(x) are discussed in
[97]. The task of estimating K is related to the task
of assessing string structure. We now introduce a
new primitive approach to this related issue based
on the power spectral density of a string’s auto-cor-
relation. This approach highlights the ability to gain
knowledge of K(x) without any higher knowledge
about the system producing string x or the meaning
of the information.

Recognizing that the complexity of a binary
string may be defined in many ways. A useful com-
plexity measure may be related to properties of the
string’s non-cyclic auto-correlation. Specifically,
given an n-bit binary string, S, where

(1)
and

(2)

define the non-cyclic auto-correlation, R, as
(3)

where

(4)

From R, calculate the sequence’s non-negative
power spectral density, Φi, by multiplying the Fou-
rier transform of R by its conjugate. The measure for
binary string complexity that is formed is denoted by
Ψ and is defined as

(5)

The motivation to this approach is found in the
rich and venerable field of synchronization
sequence design. Sequences that have an auto-corre-
lation whose side-lobes are of very low magnitude
provide good defense against ambiguity in time
localization. Such an auto-correlation function will
approximate a “thumbtack” and its Fourier trans-
form will approximate that of band-limited white
noise.

The authors of this report expect that Ψ will be of
utility in assessing complexity as it relates to the com-
pressibility of a binary string. To begin the testing of
this hypothesis, we generated strings from the
Markov process diagrammed in Figure 24.

A series of binary sequences of 8000 bits was gen-
erated; each for different values of p. Ψ was com-
puted for each of these strings and also packed into
1000-kilobyte files. These were subjected to the
UNIX compress routine. The Inverse Compression
Ratio (ICR) was computed which is the size of the
compressed file normalized to its uncompressed
size, 1000 kilobytes in these cases. The hypothesis is
that Ψ and the ICR should vary in a similar manner
and that Ψ might be a useful measure of sequence
compressibility and hence complexity. The graph in
Figure 25 following seems to endorse this hypothesis
and further research is motivated.

The above results show that fundamental parame-
ters such as power spectral density of sequence auto-

Figure 23. Automata and Compression-Based Measures of
Complexity.

S s i(){ } 0 i n<≤,=

s i() 1±{ } i∀∈

R r i(){ } 0 i n<≤,=

r i() s j()s i j+()
j 0=

n i– 1–

∑=

Ψ 1
nrm. factor
-------------------------- Φi Φilog

i
∑=

Figure 24. Markov Model for String Generation.

28

2.5 Kolmogorov Complexity

cor relation and compressibility are related and fol-
low similar trends. These fundamental metrics are
possible candidates for measuring trend of increase
or decrease in K(x). However, also illustrated by
these results (the unequal rate of change between
the two metrics) are the loose bounds within which
estimates of K(x) are related. Other methods of esti-
mating K(x) are described in [97]. In the next sec-
tion we introduce a method for attacking the issue
of loose bounds in order to make complexity metrics
useful for the purposes of assessing and providing
information assurance.

Since it is not computable, few applications exist
for Kolmogorov Complexity. One growing applica-
tion is a statistical technique with strong links to
information theory known as Minimum Message
Length (MML) coding [143]. MML coding encodes
information as a hypothesis that identifies the pre-
sumptive distribution, from which data originated,
appended with a string of data, coded in an optimal
way. The length of an MML message is determined
as follows: #M = #H + #D, where #M is the message
length, #H is the length of the specification of the
hypothesis regarding the data, and #D is the length
of the data, encoded in an optimal manner given
hypothesis H. As discussed in [143], MML coding
approaches the Kolmogorov Complexity or actual
bound on the minimum length required for repre-
senting a string of data.

Process vs. data complexity
Complexity can be applied to the problem of infor-
mation assurance in two ways. As discussed above,
conservation of apparent complexity may enable
detecting and correcting abnormal behavior.
Another method of using apparent complexity for

information assurance is in the identification of
weak areas or vulnerabilities in the system. Consider
the postulate that the more apparently complex the
data, the more difficult for an attacker to under-
stand the data and exploit the system. Thus, the
more apparently complex, the less vulnerable it is
and vice versa. One proposed metric for vulnerabil-
ity relates to evaluating the apparent complexity of
the concatenated input and output K(X.Y). This
relates to the joint complexity of the data input and
output from a certain process (Black Box). The
lower the complexity of K(X.Y) the easier the data is
for an attacker to understand; thus we will regard
K(X.Y) as a measure of data vulnerability. A compet-
ing metric is the relative complexity K(Y|X) of the
process. This is the “work” done on the information
by the process, or the complexity added or removed
from X to produce Y. Thus, K(Y|X) is a measure of
process vulnerability. The relationship among this
set of complexity metrics and the black box process
is shown in Figure 26.

Data vulnerability relates to how vulnerable a sys-
tem is to an attacker knowing information. This type
is perhaps best measured by K(X.Y), where the
cumulative complexity of input and output data is
observed to measure the difficulty an attacker would
face in decrypting or identifying messages contained

Figure 25. Variation of Psi and ICR with p.

Figure 26. Process versus Data Vulnerabilities.

29

 2. Discussion

in input and output. For example, hopefully
K(encrypted message) appears much greater than
K(decrypted message) to the casual observer and is
only recognized to be on the order of K(decrypted
message) to an authorized user with the correct key
after the decryption algorithm has been run.

Process vulnerability relates a system’s susceptibil-
ity to an attacker understanding the processes that
manipulate information. This vulnerability is best
quantified by the complexity injected or removed
from the data by the process at work. For example, a
copy or pass through process adds little complexity,
K(Y|X) is zero. But if encrypted data is sent through
the copy process, K(X.Y) will be high. The attacker
will be unable to discern the messages that are sent,
but can learn to perhaps simulate this particular
black box quite effectively. Whereas if plain text data
is sent through the copy process K(X.Y) will be low,
and in addition to understanding the process at
work, and attacker may be able to know the particu-
lar messages that are sent. Both vulnerabilities are
undesirable and represent two different dimensions
of vulnerability to be avoided. To make systems
secure one must maximize both process and data
complexity to a non-authorized user while keeping
the systems simple to authorized users. Proper
accounting of K(Y|X) and K(X.Y) throughout the
system will enable both identification of weak areas
as well as identification of foul play through the con-
servation principles discussed earlier.

Vulnerability reduction by means of system
optimization
In this section we discuss issues related to system
optimization that can be achieved through Kolmog-
orov complexity and various tradeoffs. Compression
and security are strongly linked in that they are
bounded optimally by the most random sequence
that can be produced. But smallest program size is
not the only or even most important performance
metric. Execution time must also be considered.
The tradeoff is indicated in Figure 27.

Through the use of active network techniques [3]
the tradeoff indicated may be dynamically addressed
using a concept called Active Packet Morphing for
network optimization. As shown in Figure 28, by
changing the form of information from data to code
as information flows through, a system can optimize
CPU resources, and bandwidth resources. This idea
can be extended to optimize or prevent adverse
effects from critical resources in addition to band-

width and CPU. Memory, time of execution or
buffer space could be use to trade off forms of data
representation to optimize certain system parame-
ters. The ability of data to change form within a sys-
tem opens up multiple optimization paths that were
previously invariant in the system. Rigorous security
quantification resulting from this work allows active
packets to morph by adding the required security
overhead along specific communication links such
that the security of the link along with the security of
the morphed packet yield the proper level of secu-
rity required by a given policy. Thus, security over-
head is minimized.

Another parameter that can optimize system
resources is the knowledge of how a piece of data is
used. MP3 audio is a good example of how leaving
out information (specifically that which is undetect-
able by the human ear) can optimize data size. We
introduce here the idea of “necessary” data to aug-
ment the idea of “sufficient” data or sufficient statis-
tics that represent all information contained in the

Figure 27. Program size versus Speed Tradeoffs.

Figure 28. Active Packet Morphing for Network Optimization.

30

2.5 Kolmogorov Complexity

original data. Sufficient representation of data con-
tains all the information that the source data con-
tains. Necessary data contains only the information
that the source data contains that the destination
instrument can effectively use. If you efficiently
encapsulate all the information in source data in a
statistical parameter you may have achieved a mini-
mum sufficient statistic. If you further reduce this
statistic such that you encapsulate only the informa-
tion that is usable by the end node, you have
obtained the minimal necessary sufficient statistic.
Thus, Kolmogorov Complexity related ideas have
tremendous impact for system optimization as well
as security.

Apparent complexity
The results in Section 6.2 give an upper bound on
complexity increase due to computational opera-
tions, but perhaps one can do better. In fact, the size
of the shortest program one can find to produce a
particular string is the best estimate for K(x). Since
Kolmogorov Complexity is unknowable, the best
that we can do is estimate well. This introduces the
idea of apparent complexity. It is as if to say “As far as
I know, the complexity of this string is this.” The
benefit or possible way to exploit the idea of appar-
ent complexity is that a user generating a string
should have the best idea of how hard it is to gener-
ate the string. There are many reasons why a user
may not choose to generate a string using the mini-
mal size program. Perhaps a longer program can
execute faster, or perhaps the generator is unknow-
ingly using an inefficient process. However, the gen-
erator of a string of data is presumed to have
knowledge of the process used to generate that data.
This may in fact make the non-computability of Kol-
mogorov Complexity an asset: a good candidate for
use in providing information assurance. The infor-
mation system designer or an authorized user gener-
ating data should have better knowledge of the data
process than an attacker and an attacker cannot sim-
ply compute the optimal process. Conservation of
apparent complexity enables abnormalities to be
tracked when the expected number of computa-
tional operations is not utilized in transforming
string x into string y. Thus, even if we cannot know
or compute the most efficient process for creating a
string of data, we can at least gain benefit from
ensuring through monitoring resources that the
expected process is used. This type of assurance has
in fact been used informally to detect network secu-

rity problems for many years. Discrepancies in com-
puter account charges have led to detection of
attack [122]. The idea of using Kolmogorov Com-
plexity provides the possibility of using this type of
technique on a more fundamental level, where
knowledge about the information content would not
be required to determine unauthorized activity. The
term “apparent complexity” is used to reflect the
best measurement of Kolmogorov complexity avail-
able to the party undertaking the measurement.

This section addresses the question of how vul-
nerability relates to complexity and how this leads to
the definition of a new metric called apparent com-
plexity, AK. Figure 29 is another view of the opera-

tion of the system in Figure 8. In Figure 29, system
operation, as designed by the defender, is shown as
the state machine inside the smaller box in the fore-
ground. Data of a given complexity flows in and out
of the system as shown by the arrows. However, the
main source of vulnerability is unknown or unex-
pected behavior that leads to unauthorized access of
information as shown in the empty large box in the
background.

Referring to our definition of attacker as scientist,
the attacker can be conceptualized as developing
and experimentally validating hypotheses regarding
operation of the system that will lead to access to
desired information. As previously discussed, the
better the hypothesis, the less random, or more com-
pact, the string representing the behavior of the sys-
tem is required. Kolmogorov Complexity, K, is a
measure of the smallest programmatic representa-
tion for a string that can ultimately be conceived. As
the size of the attacker’s representation of the string
formed by observed behavior approaches K in con-
structing a hypothesis of system operation, the bet-
ter understood the system is to the attacker.
However, actually computing K is a challenge cur-
rently out of reach. Instead, a more tractable substi-
tute is proposed called Apparent Complexity, as

Figure 29. Vulnerability as Unknown Behavior.

31

 2. Discussion

shown in Definition 6.5. The salient feature of this
definition is that, while similar to K(x), is relative. It
is relative in this definition to the capability of a user,
r, to define the smallest program.

In this definition, if, then r has an unreasonable
hypothesis, a hypothesis that does not contribute to
an understanding of the system. If, then r has found
a hypothesis that perfectly explains system behavior.
Thus, it is reasonable to expect to lie in the range
between {K…l(x)}. Note that r can be an individual,
such as a single attacker or single defender, or a
group with a common view of complexity. In fact, a
group of individuals could converge to a common by
means of a protocol similar to a routing protocol.

The string x in this application is a list of events by
an observer external to the system, for example, the
attacker or the defender. Initially the defender is
likely to best understand the system. The complexity
of the system, AK in Figure 29, is itself a measure of
the defender’s. This is because the defender’s goal is
usually to develop the most efficient system possible.
Thus, the system is in effect the defender’s best
approximation of K with respect to generating out-
put; in other words,. is likely to be near l(x) initially.
Note that the attacker is likely to have, at minimum,
general knowledge of such areas as login procedures
and possible error conditions such as queue over-
flows, and will be likely to test limit points where sys-
tems interconnect as being weak links. A defender
can compute, but how is determined? One method
is for the defender to determine all externally
observable points, and attempt to compute. The
accuracy of this approximation depends upon the
defender’s knowledge of all the externally observ-
able points. The accuracy also depends on the
defender’s knowledge being equal or better than the
attacker’s.

Conservation of complexity
Conserved variables enable us to deduce parameters
from the presence or absence of other parameters.
The Law of Conservation of Matter and Energy
[127], for example, allows one to deduce how well a
thermodynamic system is functioning without know-
ing every parameter in the system. Heat gain in one
part of the system was either produced by some pro-
cess or traveled from (and was lost from) another
part of the system. One knows that if the thermal
efficiency of a thermodynamic system falls below cer-
tain thresholds then there is problem. On the other
hand, if more heat is produced by a system than

expected, some unintended process is at work. A
similar situation is desirable for information sys-
tems—the ability to detect lack of assurance by the
presence of something unexpected, or the absence
of something that is expected. This seems to be far
from our reach, given that information is easily cre-
ated and destroyed with little residual evidence or
impact.

One possible candidate for a conserved variable
in an information system is Kolmogorov Complexity.
Suppose you could easily know the exact Kolmog-
orov Complexity K(x) of a string of data, x. You
would essentially have a conserved parameter that
could be used to detect, resolve or infer events that
occur in the system, just as tracking heat in a ther-
modynamic system enables monitoring of that sys-
tem. Operations that affect string S and cause it to
gain or lose complexity can be accounted for, and an
expected change in complexity should be resolvable
with the known (secured) operations occurring in
the information system to produce expected
changes in complexity. Complexity changes that
occur in a system that cannot be accounted for by
known system operations are indications of unautho-
rized processes taking place. Thus, in the ideal case
where Kolmogorov Complexity is known, a check
and balance on an information system that enables
assurance of proper operation and detection of
unauthorized activity is possible. Unfortunately, as
previously discussed, a precise measure of Kolmog-
orov Complexity is not computable. We can, how-
ever, determine a bound on the Kolmogorov
Complexity as shown in the theorems below.

Theorems of conservation
Kolmogorov Complexity, K(x), can be thought of as
a conserved variable that changes through computa-
tional operations conducted upon strings. In order
for K(x) to be a conserved variable we must be able
to account for changes in K(x), which must be corre-
lated with another known value. Theorems 6.1 and
6.2 presented below enable bounds to be placed on
the changes in K(x) that occur due to computational
operations occurring in an information system. The
two theorems below show bounds on the amount of
complexity that can exist due to knowledge of other
strings or conducting computational operations.

While not computable from below, upper bounds
on the increase in Kolmogorov Complexity can be
crudely known by keeping track of the size of pro-
grams that affect data. This bound may be incredibly

32

2.6 Complexity Estimation Algorithms for Information Assurance

loose, as it is quite possible to operate on a string
and make it much less complex than the input. One
would need a method to recognize this simplifica-
tion. However, these results provide an intuitively
attractive method for quantifying the “work” per-
formed by a computational operation on informa-
tion – the change in complexity introduced by the
operation. A thorough treatment of bounds related
to K(y|x) and the “Information Distance” between
strings is contained in Bennett et al. [122].

2.6 COMPLEXITY ESTIMATION ALGORITHMS
FOR INFORMATION ASSURANCE

In order to motivate the study of complexity estima-
tors for information assurance, this section will high-
light recent results using complexity to detect FTP
exploits [97] and Distributed Denial of Service
(DDoS) attacks [118]. General principle and con-
cepts of complexity based vulnerability analysis will
also be discussed, providing further potential infor-
mation security applications of complexity estima-
tors.

Detection of FTP exploits using protocol
header information
In [97], the use of the principle of conservation of
complexity to detect anomalous use of the FTP pro-
tocol for intrusion detection is presented. Protocols
enforce patterns by design, and the level of redun-
dancy or patterns in protocol information, which
can be measured through complexity metrics, was
hypothesized to be an objective indication of attack
vs. healthy behavior. Here complexity is estimated
using Unix compress—a universal compression algo-
rithm based on Lempel Ziv 78. TCP dump data from
FTP control connections, filtered to remove certain
high variance fields such as time stamps, was com-
pressed using Unix compress and compared to trace
files of healthy sessions. Results, summarized in
Figure 30, indicate that attack sessions, obtained
from running various FTP exploit scripts down-
loaded from numerous Internet sites, have measur-
ably lower complexity (when normalized against
trace length) than healthy FTP sessions.

These results indicate that the principle of con-
servation of complexity applied to FTP exploits
enables detection of inappropriate or unhealthy use

of the FTP protocol. These concepts are summa-
rized in Figure 31.

The FTP protocol specification, RFC 959,
enforces and enables a certain set of behaviors that
results from the rules and specifications of the pro-
tocol being exercised by the allowable space of user
inputs. The large Space of Models shown in the fig-
ure indicates this set of behaviors or models. Ideally,
the allowable space of models would be calculated
from the protocol specifications, resulting in a space
of models consisting of finite state machines, push-
down automata, or whatever modeling device
achieves the Kolmogorov Complexity for the partic-
ular behavior. Among this set of models would be
models corresponding to healthy behaviors and
models corresponding to attack behaviors. The

Figure 30. Inverse Compression Ratio of Filtered FTP Ses-
sion Trace Files For Attacks and Healthy Sessions.

Figure 31. Conservation of Complexity Applied to FTP Exploits.

33

IBOO 2GO0 2500 3000 3&00
^i2e of ~lbRii TC^ Ziunp Traoa =%

 2. Discussion

results in indicate that the complexity of the TCP
dump header information, which can be interpreted
as an objective measure of the size model repre-
sented by the data, indicates that attack behaviors
(when normalized by session size) tend to be less
intricate or smaller models than normal healthy ses-
sions, thus enabling detection of exploits through
complexity estimators. Further research is in
progress to expand upon these results, but clearly
better complexity estimators will benefit character-
ization of behavior models and the ability to discern
attacks.

Detection of DDOS using differential
complexity of data payload
 Distributed denial-of-service (DDoS) attacks are
caused by an attacker flooding the target machine
with a torrent of packets originating from a number
of machines under the attacker’s control. These
machines are called ‘zombies’. Tools that control
and launch attacks from these zombies against the
target perform the attacks. The attacks can cause
networks to be disabled for extended periods of
time during which customers, employees, and busi-
ness partners, are unable to access information or
perform transactions. This section describes an
approach that leverages fundamentals of informa-
tion complexity to provide a flexible and effective
method for detection of distributed denial of service
attacks. Stated as simply and succinctly as possible,
we hypothesize that information, comprising obser-
vations of actions with a single root cause, whether
they are faults or attacks, is highly correlated. Highly
correlated data has a high compression ratio.

The DDoS attack detection algorithm makes use
of a fundamental theorem of Kolmogorov Complex-
ity that states: for any two random strings X and Y,
K(XY) ≤ K(X) + K(Y) + C where K(X) and K(Y) are the
complexities of the respective strings, c is a constant
and K(X.Y) is the joint complexity of the concatena-
tion of the strings. Proof for the above theorem is
described in [161]. Simply put, the joint Kolmog-
orov Complexity of two strings is less than or equal
to the sum of the complexities of the individual
strings. The equivalence holds when the two strings
X and Y are completely random i.e. they are totally
unrelated to each other. Another effect of this rela-

tionship is that the joint complexity of the strings
decreases as the correlation between the strings
increases. Intuitively, if two strings are related, they
share common characteristics and thus common
patterns. That knowledge can be harnessed to gen-
erate a smaller program that can represent the com-
bined string.

In terms of detection of DDoS attacks, the prop-
erty given by Inequality (1) is exploited to distin-
guish between concerted denial-of-service attacks
and cases of traffic overload. The assumption is that
an attacker performs an attack using large numbers
of similar packets (in terms of their type, destination
address, execution pattern, timing, etc.) sourced
from different locations but intended for the same
destination. Thus, there is a high degree of similarity
in the traffic pattern. A Kolmogorov Complexity
based detection algorithm can quickly identify such
a pattern. On the other hand, a case of legitimate
traffic overload in the network tends to have many
different traffic types. There is not much correlation
between the different traffic flows and, in aggregate,
the traffic appear to have a random pattern. There-
fore, our algorithm samples every distinct flow of
packets (distinguished by their source and destina-
tion addresses) to determine if there is a large
amount of correlation between the packets in a flow.
If it is determined to be so, then all suspicious flows
at the node are again correlated with each other to
determine that it is indeed an attack and not a case
of a traffic overload.

The correlation itself is performed in the follow-
ing manner. For the collected samples, the probe
calculates a complexity differential over the samples.
Complexity differential is defined as the difference
between the cumulative complexities of individual
packets and the total complexity computed when
those packets are concatenated to form a single
packet. If packets x1, x2, x3…xn have complexities
K(x1), K(x2), K(x3)… K(xn), then the complexity
differential is computed as:

where K(x1x2x3…xn) is the complexity of the packets
concatenated together as measured in a finite time

K x1() K x2() � K xn()+ + +[] K x1x2�xn()–

34

2.6 Complexity Estimation Algorithms for Information Assurance

interval window (Figure 32). If packets x1, x2, x3…xn

are completely random, K(x1x2x3…xn) will be equal
to the sum of the individual complexities and the
complexity differential will therefore be zero. How-
ever, if the packets are highly correlated i.e. some
pattern emerges in their concatenation, then the
concatenated packet can be represented by a
smaller program and hence its complexity i.e.
K(x1x2x3…xn) will be smaller than the cumulative
complexity.

We compared our technique to a prototype
packet counting algorithm for DDoS detection and
found that our technique is better at discriminating
traffic patterns. The experimental setup consisted of
a set of active nodes arranged in the topology shown
in. Node AH-1 continuously generates traffic consist-
ing of audio packets destined for node AN-2. The
load induced by this traffic is high enough that it is
registered at node AN-1 as a ‘suspicious’ flow i.e., a
traffic flow whose complexity differential exceeds
the threshold. The load induced by this traffic flow
is kept constant throughout the experiment. Node
AH-2 generates the attack flow. The load induced by
the attack flow is varied to determine the perfor-
mance of the algorithms. The experiment is run
twice, once with only the attack source on (node AH-
2 transmitting only) and the next time with both
sources on (both node AH-1 and node AH-2 trans-
mitting). The rationale is that an attack is essentially
a sustained overload induced for some time interval.
The purpose of the experiment is to determine the
effectiveness of the two techniques in separating and
identifying an attack in the presence of background
traffic

Figure 32 and Figure 33 show the performance of
the packet-counting and complexity-based

approaches, respectively as measured against the
load induced by the two sources (in packets per sec-
ond) described above. Figure 33 shows that the

packet-counting metric cannot discriminate
between an attack and a true overload. When the
audio source is transmitting in conjunction with the
attack source, any threshold set by the packet-count-
ing algorithm running on node AN-1 will be
exceeded leading to the false conclusion that the
node is under attack. For example, based on the
attack pattern only (dashed curve), we decide to set
the threshold at 70 packets/s for a load of 0.6. When
the audio source is introduced, the combined traffic
trips the same threshold at a load of only 0.4, which
is a false positive.

Figure 33 shows the complexity differential versus
load curve for a given sampled time interval, which
in this case was 10 seconds. Note that higher differ-
ential complexity corresponds to reduced complex-
ity of the flow. In effect, the higher differential
complexity estimates the deviation from the ran-
domness inherent in a healthy network with a mix of
different traffic flows. The experiment thus shows
that the attack flow is estimated to be less complex
over time than the ambient legitimate traffic. It is to
be noted that the complexity-based metric does not
change its behavior when a combination of attack
and traffic sources is used. This is because the attack
traffic dominates the combined flow and hence the
complexity differential is roughly equal to that
observed if only the attack flow existed. Therefore,
the complexity-based approach is more accurate in
separating false alarms from true attacks because it

Figure 32. Topology of the experiment.

Figure 33. Performance of packet counting metric.

35

 2. Discussion

can conser ve salient patterns of a traffic flow
(Figure 34).

Complexity-based vulnerability analysis
Complexity-based vulnerability analysis attempts to
determine the likelihood of attack innovation. An
attacker initially views a system as a black box. The
attacker must form hypotheses about the system and
test those hypotheses to successfully prosecute an
attack. The hypothesis suggested by complexity-
based vulnerability analysis is that less complex com-
ponents of the system will be easier to understand,
quicker to be manipulated, and are therefore more
vulnerable. The ability of an attacker to understand,
and thus successfully innovate a new attack against a
system component is directly related to the size of
the minimal description of that component.

A common criticism of complexity-based vulnera-
bility analysis is that components that are more com-
plex could be vulnerable for precisely the same
reason; namely, the defender does not fully under-
stand high complexity components, thus leaving
potential vulnerabilities. However, even in this cir-
cumstance, the fundamental hypothesis remains
valid, the attacker must understand components
well enough to manipulate them; it is the likelihood
of understanding component manipulation well-
enough by the attacker that remains the object of
complexity-based vulnerability analysis. In fact, the

Internet Protocol suite, which claims simplicity as
one of its virtues, is a popular target of attack; sim-
plicity (the colloquial use of the term is used here
because the Internet Protocol suite lacks a definition
of simplicity) has not appeared to reduce its vulnera-
bility.

The technique used by the attacker can be
broadly defined as an attempt to move the system
into a state unanticipated at system design time. For
purposes of simplification, consider the system as
described by a finite automata (FA) in a black box.
The attacker can input data to the FA and receive
output. The attacker can use patterns in the
input/output data to deduce information about the
system. The complexity-based vulnerability hypothe-
sis can be restated more precisely as: lower complex-
ity components of the system, from the attacker’s
point of view, that move the system into a state unan-
ticipated in system design, will be deduced sooner.

The complexity-based vulnerability hypothesis is a
meta-hypothesis because it is a hypothesis involving
an attacker’s hypotheses. The meta-hypothesis must
be validated by experimentation. An ideal experi-
ment, assuming careful setup and control is pre-
sented in[109]. The use of complexity metrics for
vulnerability analysis is, along with the applications
discussed above, one of the possible objective uses of
complexity theory that will benefit from accurate
and low overhead complexity metrics, which is the
subject of this report.

Methods of estimating complexity
The previous section identifies two methods for esti-
mating complexity – empirical entropy and universal
compression algorithms. Both metrics are related to
Kolmogorov Complexity, in that K(x) is the ultimate
compression bound for a given finite string x. Thus
any universal compression algorithm is a natural
choice for a complexity estimator. However, since
universal compression algorithms are designed to
apply to populations of strings, the ultimate com-
pression bound for a specific string is generally
smaller than that achieved by a universal compres-
sor.

Figure 34. Performance of complexity-based metric.

36

2.6 Complexity Estimation Algorithms for Information Assurance

Figure 35 describes how the quality of complexity

estimator is tied to the computational model consid-
ered in estimating complexity. Simple estimates,
such as empirical entropy lie at the bottom of
Figure 35 and can be implemented using very sim-
ple computational platforms with very little over-
head. Popular universal compression algorithms can
be implemented with context free grammars (finite
automata) and provide additional accuracy in com-
plexity estimation at additional computational
expense. Kolmogorov complexity is the theoretical
limit for complexity estimation that requires compu-
tational capability equal to that of a universal Turing
machine on which anything computable can be
computed. Due to the halting problem in searching
for the theoretical limit for a specific string (we can-
not determine if a candidate compressor will ever
halt) the theoretical bound cannot be achieved One
example of a universal compression algorithm is the
universal compression algorithm designed by Lem-
pel and Ziv which is known as LZ78 [183]. The LZ78
algorithm partitions a string into prefixes that it
hasn’t seen before, forming a codebook that will

enable long strings to be encoded with small indexes
(Figure 36).

Consider an example to illustrate how this algo-
rithm works: LZ partitioning of the string:

1011010010011010010011101001001100010

is performed by inserting commas each time a
sub-string that has not yet been identified is seen.
The following partition results:

1,0,11,01,00,10,011,010,0100,111,01001,001,100,010

Figure 36 represents this string partition as a
binary tree. The nodes marked in black of the five
level tree shown are nodes contained in the LZ78
partition of the example string. Nodes that are not
filled in indicate code words or phrases that are not
contained in the LZ78 partition. Each node or
phrase occurs exactly once in the string with the
exception of the last phrase which may be a repeat
of a previously seen node. Good compression (low
complexity estimation) results when the LZ78 parti-
tion contains a deep, sparse tree, while poor com-
pression (high complexity estimation) results from
strings that are less deep and more completely popu-
lated at each level

A comparison of ubiquitous complexity
estimators
This section compares the performance of the com-
plexity estimators used in our work so far, viz. empir-
ical entropy, Zlib-compress and LZ78-code-length
estimator.

Empirical entropy estimation technique measures
the weight of ‘1’s that occur in a binary string in rela-
tion to the length of the string. Thus a string with a

Figure 35. Hierarchy of computational platforms in estimat-
ing complexity.

Figure 36. LZ78 binary tree representation of the partition for
the binary string: 1011010010011010010011101001001100010.
Nodes contained in the partition are colored in black.

37

 2. Discussion

higher number of 1’s is estimated to have a higher
complexity as compared to a string of the same
length with a lower number of 1’s. This estimation
technique is computationally simple and fast but not
very accurate.

Zlib-compress uses the java.util.zip.Deflater class
found in the Java compression library [184]. Attacks
using Kolmogorov Complexity Metrics. The inverse
compression ratio is estimated to the complexity of
the string using this method. This universal com-
pression algorithm utilizes LZ77 coupled with Huff-
man coding.

The LZ-code-length estimation method attempts
to guess at the amount of compression possible for a
string using the LZ78 compression algorithm with-
out actually performing it. The three estimators
were compared for accuracy by conducting the fol-
lowing experiment. A byte buffer was filled with par-
titioned into two, one of which was filled with
patterned data (i.e., data having a known pattern)
and the other part was filled with random data. The
estimators were run on the buffer to get a complex-
ity value for each estimator. The ratio of the random
data to the pattern data in the buffer was increased
in each successive run set. Thus the first set had all
pattern data in the buffer (and thus low complexity)
while the final set had all random data (and thus
high complexity). The pattern in the patterned data
was varied to prevent bias and the average complex-
ity value was chosen for each set.

Figure 37 shows a comparison of the three estima-
tors. Zlib-compress has a linear change in complex-

ity as the ratio of non-pattern data to pattern data
increases and is the most accurate of the three esti-
mators. LZ-encode is seen to overestimate the com-
plexity of the data with respect to Zlib-compress
throughout the range of the experiment. Empirical
entropy is seen to be the least accurate over the
range. It grossly overestimates the complexity when
there is more pattern data in the buffer because it is
simply counting the weight of the 1’s in the string
instead of looking for patterns.

Figure 38 shows the variance of the estimated val-

ues over the range of the experiment. Zlib-compress
can be seen to be least sensitive to the type of pat-
tern data used. Empirical entropy estimation vari-
ance is highest when different patterns are used for
the same ratio of random to pattern data. This is
because the count of 1’s in the pattern data affects
the estimation value. On the other hand, when the
data is more random, the ratio of 1’s is expected to
be remain close to 0.5.

Minimum description length principles
The previous section identifies the challenges in
dealing with variance and accuracy of complexity
estimators. We will now address a related concept
which will be used to build a new complexity estima-
tion algorithm Two statistical application techniques
for inductive inference that are quite similar to the
Kolmogorov Complexity, and with strong links to
information theory are known as Minimum Message
Length (MML) coding and Minimum Description
length (MDL) coding [181]. For our purposes these
techniques are equivalent and will be used inter-Figure 37. Complexity estimate in bits vs. randomness of data.

Figure 38. Complexity estimation variance vs. randomness
of data.

38

Complexity Estimation

.^
X

a.
E
U

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

.--^
...^^^....

f-*-^-^'^' \^ /

/ /

' /
•'■ ^

/ /
/ /

■ y y
r 1 1 1 1 1 1 1 1 1 1 1 1 ' 1 1 1 1 1 1 1

♦ Entropy
T ZlibCompfess

A LZEncode

0 10 2030405060709090 10
0

Complexity Estimate Variance
1.00E+08

§ 1.00E+04

CT 1.00E+03
o

1.00E+02

1.00E+01

1.00E+00 M I I I I I I M I M M I M I I
0 10 20 30 40 50 60 70 80 90 10

0

% Nori-Pattern Data

% Non-Pattern Data

2.6 Complexity Estimation Algorithms for Information Assurance

changeably. MML coding encodes information as a
hypothesis or model that identifies the presumptive
distribution, from which data originated, appended
with a string of data, coded in an optimal way. The
total descriptive constant C of a string under the
concepts of MML or MDL string can be defined in
two parts as C = M + D, where M is the model cost
and D is the data cost. In the preferred two-part
description the model M describes all regularity
associated with a string and the data portion D
describes the random elements of the string where
the sum of the lengths of these two parts is equal to
the Kolmogorov complexity of the string. In other
words, the best two-part description of the data
should not be longer than the optimal single part
description of the data. A two-part description is
known to exist if only consisting of a set containing a
single string. There are generally many two-part
descriptions of a string, the shortest being termed
the algorithmic minimum sufficient statistic. A thor-
ough treatment of algorithmic statistics for the class
of models consisting of finite sets and probability dis-
tributions is contained in [172].

Sophistication
One criticism of the use of Kolmogorov Complexity
for characterization of information is that it is in
some sense a measure of randomness. Random
information is not necessarily important informa-
tion. This criticism can be addressed by thinking of
Kolmogorov complexity as two parts. Sophistication
is a measure of meaningful information that was for-
malized in [183], harnessing the fact that the short-
est description of an object (with length equal to
Kolmogorov Complexity) can be expressed in two
parts. The first part describes a Turing machine that,
given the second part as input, produces a given
string. The first part of the code models the regular-
ities of the string, while the second part describes
the irregularities. The combination of model and
code that construct a string must together be the
smallest under the Minimum Description Length
criteria. Vitányi in [183] expands the model space to
include not just finite sets but also any computable
model in the recursive function class. The relation-

ships between Sophistication and Kolmogorov Com-
plexity are shown in Figure 39.

The motivation for studying sophistication is
rooted in a search for a method to quantify “mean-
ingful information”. In an attempt to rigorously
define the normally subjective notion of “meaning”,
Vitányi associates the model with the meaningful
information involved in the string, while the second
part of the code is the meaningless part. For exam-
ple, a purely random string of length L has Kolmog-
orov Complexity on the order of L. We could
compare this to a string taken from a piece of
English text that has Kolmogorov Complexity of L
(the uncompressed string would have length much
larger than L). Even though these two strings have
similar complexity, there are large differences
between their two-part codes. The random string has
no model associated with it and is essentially all data.
The English text will conform to some model associ-
ated with the frequency of use of letters, words and
phrases. If the author of the text is known, a better
model tuned to the writer’s vocabulary is possible.
Thus, minimal two-part code of the sample of
English text will consist of a fair amount of model in
addition to data encoded under the model. Thus
the English text sample would be considered more
sophisticated than the random data even though
they are equally complex.

A new complexity and sophistication
estimation algorithm
Sophistication motivates the search for new com-
plexity and sophistication metrics that not only indi-
cate the compressibility or randomness of a given
string, but also indicate information about the size
of the model that could produce the string. Univer-
sal compression algorithms are not designed to do
this, since their ultimate goal is to produce a one

Figure 39. Comparison of sophistication and Kolmogorov
Complexity.

39

Sophistication is the size of the description of the model in
the smallest two part description of a binary string

String 1

Enumeration within
model (random part)

Model
size

String 2 | |

K(String 1)=K (String 2)

String 1 is more sophisticated
(meaningful) than String 2

even though their complexities
are the same

Hypottiesis. Sophistication
is an even better metric for
objective model assessment

and evaluation than K{x)

Recursive function p is a sufficient statistic for data x If:
sopfi(x) = mln{l(p):(p, d) is a description of xj

 2. Discussion

part encoded version of a string that can be recon-
structed into the string at will. In this section, we
derive a heuristic that will lead to a new universal
sophistication and complexity estimator that forms a
two-part code for a given string.

 We consider compression of a finite binary string
X of length L. We seek the optimal partition of X
into I symbols that can be encoded using a near opti-
mal encoding strategy such as Huffman coding such
that the combination of the descriptive cost of the
model plus the encoding of the data under the
model are minimized. The following parameters are
defined:

The effect of a partition on MML
 The entropy of a distribution of symbols (Hs)
defines the average per symbol compression bound
in bits per symbol for a prefix free code. For a distri-
bution p of I symbols:

Huffman coding and other strategies can pro-
duce an instantaneous code approaching the
entropy when the distribution p is known. But what
is the best encoding possible when the source distri-

bution is not known? One way to proceed is to mea-
sure the empirical entropy of the string, that is the
entropy defined inherently by the input string itself.
However, empirical entropy is a function of the par-
tition and depends on what sub-strings are grouped
together to be considered symbols. See for a consid-
eration of some of the inadequacies of the well-
known Lempel-Ziv algorithms in dealing with higher
order empirical entropies.

 Our goal is to optimize the partition (the num-
ber of symbols, their length, and distribution) of a
string such that the compression bound for an
instantaneous code, which is equal to R*Hs, plus the
codebook size is minimized according to the MML
criteria. We estimate the codebook size (model
descriptive cost M) to be the sum of the lengths of
unique symbols:

Thus we estimate the total descriptive cost Cp:

Cp = M + R ⋅ Hs

Consider for now that all symbols are equally
likely and of equal length. Thus:

describes how entropy changes as unique symbols
are added to the partition; each added symbol
increasing the number of bits required to encode
each symbol in a less than linear fashion. This
increased descriptive cost per symbol must be traded
against symbol length and number of repetitions.

 For a given number of unique symbols, more rep-
etitions will at first tend to decrease the overall
description length, since the fixed length string of
size L will now be divided into shorter words of size l
and the codebook for the string will now be shorter
to describe.

The description length decreases (the reduction
in model size dominates) until a minimum occurs
where the benefit from a decreased codebook size is
offset by the fact that more symbols of a fixed aver-
age encoded length (on the order of Hs) must be
appended to the description. Figure 31 plots
description length vs. number of repeats for various
size equally likely alphabets based on a 1024 bit
string. The knee in the curve for each number of
symbols represents the optimal number of repeti-
tions for a certain symbol alphabet size.

Table 3 Table 1: OSCR parameters

Parameter Meaning
L Length of finite string S

I
Total number of symbols in partition

li Length of symbol i

ri

Number of repetitions of symbol i in S
If repetitions for all symbols are equal
then ri

 = r and

R
Total number of repetitions,

Li

Length of S consumed by symbol i
L = liri

Cp

Total Descriptive cost of S under parti-
tion p. Equal to the sum of the model
description M plus the encoding of the
data under the given model.

ci
Descriptive Cost of Symbol i. This
parameter will be derived in section 4

Di
Symbol Compression Ratio (SCR)

i 1,I[]∈

R ri
i
∑=

L Li
i
∑=

Hs pi 2
p()log

i
∑–=

M li
i
∑=

ri
R
I
--- r,= = li

L
R
--- l and = = Hs 2

I()log=

40

2.6 Complexity Estimation Algorithms for Information Assurance

The minimum for a given number of symbols in
the data can be calculated as follows:

where s is the number of symbols contained in the
data (Figure 40).

It can be easily shown that for a given number of
symbols I, a minimum description length can be
expected if each equally likely symbol is repeated r
times where:

This number represents the optimal tradeoff
between codebook size and encoded data size for a
given string partition into equally likely, equal
length symbols (Figure 41).

As shown in Figure 41, the benefit of repeated
patterns in fixed size data is overcome more quickly
in a large equally likely alphabet. For the case where
the entropy is less than one (i.e., there is only a sin-
gle symbol) the benefit increases until all symbols
are repeats, as expected. As an example of this prin-
ciple, consider a 1000 bit string

X=101010101010101010101010101010101010101…

There are many ways to parse this string. As
shown in Figure 42, in an optimal parsing of this
string with a two symbol, equal length, and equally
likely alphabet, each symbol would repeat about 20
times. The optimal descriptive cost for this partitions
is approximately 100 bits = 25 bits to describe each

codeword, 40 bits to encode each codeword in the
string. Note that we have ignored “Comma” cost,
which will be required to show separation of code
words in the codebook. The codebook listed below
achieves this partition:

A=1010101010101010101010101

B=0101010101010101010101010,

with the encoded string represented by ABABA-
BAB… 20 times.

Two other partitions are noted in, both with simi-
lar code words except the length of each codeword
is different. In the first case, (represented by a + in
Figure 42) each symbol is 125 bits long and repeated
four times. In the second case each symbol is 5 bits
long and repeated 100 times. Both cases require a

Cp li R+
2

I() IL
R
--- R

2
I()log+=log

i
∑=

Figure 40. More equally likely symbols in a partition
cause the Entropy to increase – raising the bits per
symbol descriptive cost in a less than linear manner.

r IL

2
I()log

1
I
---=

Figure 41. Symbol length and number of repetitions of
equal length equally likely symbols comprising a string of
finite length produce competing affects in total string de-
scriptive cost.

Figure 42. Descriptive cost vs. number of repeats for
two symbol partitions of the 1000 bit string
101010101….

41

Descripti\e Cost of 1000 bit siring vs. Number of
1400

Number Of Repeats

 2. Discussion

much lar ger descriptive cost for the string. In the
first case the additional burden is on the codebook
that must describe two 125-bit symbols. In the sec-
ond case the burden is on the encoding of the data,
which must describe 200 symbols once encoded. As
a benchmark, the LZ78 can encode this string in 378
bits.

The above analysis shows that when partitioning a
string both length of symbols and number of repeti-
tions of symbols must be traded off and optimized in
order to minimize descriptive length. We develop a
method to treat non-uniform distributions in the
next section.

Symbol compression ratio
 In seeking to partition the string so as to minimize
the total string descriptive length Cp, we consider
the length that the presence of each symbol adds to
the total descriptive length and the amount of cover-
age of total string length L that it provides. As
described in Section 3, the descriptive cost of the
model is on the order of the sum of the lengths of
unique symbols in the partition. The descriptive cost
of the encoded data is on the order of R⋅Hs, where
Hs is the entropy of the symbol partition and R the
total number of symbols in the string. The probabil-
ity of each symbol, pi, is a function of the number of
repetitions of each symbol:

Thus, we have:

Since

we can simplify this to:

Hs is a measure of the ability to encode the distri-
bution p of I symbols. The smaller Hs the fewer bits
per symbol required to encode each symbol. For a
fixed I, Hs is maximized when all I symbols are

equally likely. Total number of symbols R multiplied
by Hs will yield the length required to encode the
data using an optimal technique. This can be added
to the codebook size to achieve a bound for the
descriptive complexity under partition p
(Figure 43).

Thus, descriptive length of the string under parti-
tion p is equal to:

Our goal is to find a per symbol descriptive cost.
In the equation above, all terms are defined per sym-
bol i with the exception of the first term. We define
the relation:

where q is a constant estimating log2(R). For R that
can vary between 2 and L/2 for symbols of size 2 bits
or greater, log2(R) can be estimated to enable an
incremental, per symbol formulation for Cp. Estimat-
ing q:

results in a conservative approximation for Rlog2(R)
over the likely range of R as shown in for partitions
of strings having length equal to 1000 bits. The per-
symbol descriptive cost can now be formulated:

pi

ri

R
---=

Hs pi
i
∑– pi()

2
log

ri

R

i
∑–

ri

R
--- 
 

2
log= =

R ri
i
∑=

Hs 2
log R() 1

R
---– ri 2

ri()log
i
∑=

Figure 43. Estimate of Rlog2(R) .

Cp R 2 R()log li
i
∑ ri 2 ri()log–+=

R
2

log R() ri 2
R()log

i
∑ q ri

i
∑= =

q
2

L
2
--- 
 log=

ci ri 2
L
2
--- 
 log 2 ri()log– li+=

Di

ci

Li

ri 2
L
2
--- 
 log 2 ri()log– li+

liri
--= =

42

2.6 Complexity Estimation Algorithms for Information Assurance

C p is less than the sum of the individual code
words due to the conservative approximation for
log2(R). A lower bound on the estimate for d can be
formed as well to create upper and lower bounds on
the descriptive length Cp:

This bound can be tightened, as better estimates
of the total number of repetitions in a partition
become known.

 We now have a metric that conservatively esti-
mates the descriptive cost of any possible symbol in a
string. A measure of the compression ratio for a par-
ticular symbol is simply the descriptive length of the
string divided by the length of the string “covered”
by this symbol. We define the compression ratio of a
symbol (SCR) to be (Figure 44):

Thus we have a metric to describe the effective-
ness for compression of a particular candidate sym-
bol in a possible partition of a string that can be
used for comparison in forming a partition Examin-
ing SCR above it is clear that good symbol compres-
sion ratio arises in general when symbols are long
and repeated often. Clearly, selection of some sym-
bols as part of the partition is preferred to others.

Figure 44 and Figure 45 show how symbol com-
pression ratio varies with the length of symbols and
number of repetitions for a 1024 bit string. In both
figures the discontinuities reflect when symbol

length times number of repeat exceeds string
length, and SCR is therefore undefined (Figure 45).

Optimal Symbol Compression Ratio (OSCR)
algorithm

 The Optimal Symbol Compression Ratio (OSCR)
algorithm forms a partition of string x into symbols
that have the best symbol compression ratio among
possible symbols contained in x. The concept is to
form a codebook dictionary that provides near opti-
mal compression by adding one codeword at a time
based on the code words symbol compression ratio.
The algorithm is shown in the sidebar.

cmini
ri 2

ri()log li ri 2
ri()log–+ li= =

 cmini
i
∑ cp ci

i
∑≤ ≤⇒

Figure 44. SCR vs. Symbol Length for 1024-bit String.

Figure 45. Figure 16 SCR vs. Repeats for 1024 bit String.

OSCR ALGORITHM
1. Form a binary tree of all non-overlapping

sub-strings contained in x that occur’ 2
times and note the frequency of occur-
rence.

2. Calculate the SCR for all nodes (sub-
strings). Select the sub-string from this set
with the smallest SCR and add it to the
model M.

3. Replace all occurrences of the newly added
symbol with a unique character to delineate
this symbol. Repeat steps 1 and 2 with the
remaining binary string elements until no
binary elements remain.

4. When a full partition has been constructed,
use Huffman coding or another coding
strategy to encode the distribution, p, of
symbols.

43

 2. Discussion

The following comments can be made regarding
this algorithm:

• This algorithm progressively adds symbols that
do the most compression “work” among all the
candidates to the code space. Replacement of
these symbols left-most-first will alter the fre-
quency of remaining symbols.

• SCR is at first based on the crude estimate for
R discussed previously. Justification of this esti-
mate and possible iteration of the algorithm
can be achieved by performing the algorithm
again upon completion with the computed
value for R defined by the partition calculated
by the algorithm. An unchanged partition vali-
dates the output of the algorithm. If the parti-
tion does change, the algorithm can be iterated
using computed values of R until it converges
or repeats a previous case.

• A less exhaustive search for the optimal SCR
candidate is possible by concentrating on the
tree branches that dominate the string.

• The algorithm does not require a prefix free
partition of the string. The left-most substitu-
tion of highest SCR symbols first suffices to pro-
duce a unique partition. A prefix free code is
however assumed in the encoding.

• Reduction of the binary tree size can be
achieved by noting minimum SCR at each level
and considering bounds from tree nodes
(Figure 46).

As an example consider the 40-bit string below:

X = 0011001001000010100101001100100110011001.

A full five level binary tree expansion of all sub
strings contained in this string does not include all
possible nodes. Rather, only certain possible pat-
terns are contained in any partition. identifies the
possible sub strings that occur. The first pass of the
OSCR algorithm will produce the binary tree of sym-
bol frequencies shown in Figure 47. Note, in build-
ing this tree we noted and utilized the fact at the
second level of the tree the SCR of 12 repetitions of
the symbol 01 is < 0.5, thus we did not expand tree
nodes with two or less repeats.

As shown in Figure 47, the symbol 001 is repeated
10 times and has the smallest symbol compression
ratio. Substituting “A” for this symbol produces the
string:

X’ = A1AA00A01A01A1AA1A1A (Figure 47)

Iterating the algorithm shows that the second
symbol candidate, 01 that has the smallest compres-
sion ratio, does not promote compression. Thus the
remaining symbols simply substitute for 1 and 0:

ABAACCACBACBABAABABA

This provides the distribution of symbols shown
in Figure 4. The entropy of this symbol distribution
is 1.48 bits per symbol. This can be approximated by
the Huffman tree shown in Figure 48, which

Figure 46. Binary Tree for a specific string. Nodes in-
cluded are in white.

Figure 47. Binary Pattern Tree in first pass of algorithm.

44

Kev

SulT-iliini!

Suh^Srriiw S<T(

CM a.-ii

ffJI .4.V1

II am .Sid

CH incri 7JiM

0011(10

2.6 Complexity Estimation Algorithms for Information Assurance

achieves an expected encoded length of 1.5 bits per
symbol.

Simple substitution of the new code results in the
encoded string:

X’ = 010001111011100111001000100100:

Thus, the encoded message has been reduced to
30 bits from the original 40 bits. The descriptive cost
of the codebook is estimated as the sum of the
lengths of symbols, which is equal to 5 bits. Depend-
ing on the strategy for delineating the separation
between code words and defining the prefix free
encoding of the codebook this descriptive cost could
vary. Estimated results compared with LZ78 for sev-
eral short strings are shown in Table 5.

The previous example illustrates the concept of
the OSCR algorithm. As is the case with Lempel-Ziv

and other compression algorithms, greater compres-
sion is realized on strings of longer length. In addi-
tion to compression, the algorithm provides the
following benefits:

• The model developed can be used to produce a
typical set of strings to which x belongs.

• The symbol alphabet size of 3 symbols is an
inherent parameter associated with this string
that can be used to compare it with other

strings. The symbol size measurable parameter
related to complexity that reflects the number
of variables address by the string.

Comparison with Lempel-Ziv78
 The OSCR and LZ78 algorithms share the approach
of dictionary coding strategies, achieving compres-
sion through giving smaller representations for
longer repeated strings. The difference is that the
string patterns identified and indexed in LZ78 are
precisely the unique string patterns that occur from
left to right that have not been seen before. No
effort is made to construct a partition of repeated
patterns that gives a more optimal encoding than
that which falls out of the patterns or string phrases
that occur first. In most implementations all sub-
strings are given an equal size codeword (index),
therefore a frequently occurring short codeword
may actually be expanding the size of the encoded
string. The benefit of the Lempel-Ziv approach is
the computational simplicity and ease with which
the dictionary or codebook is communicated. The
dictionary is essentially interleaved in the encoded
data and commas or explicit communication of the
codebook is not required.

 The OSCR takes the other extreme by identify-
ing the repeated patterns that contribute most to
compression of the string at the expense of compu-
tational requirements. One can envision a combina-
tion of these two philosophies that will be addressed
in future work that provides a continuum of grada-
tion between compression gain and computational
requirements.

Comparison of estimators for detection of FTP
exploits
The goal of the OSCR algorithms is to improve com-
plexity estimation in a manner that provides the abil-
ity to discern attack vs. healthy behaviors. Results
from Figure 172indicate a separation of curves for
attack vs. healthy ftp traffic. Widening these curves
will result in better ability to discern exploits with
fewer false alarms.

Figure 49 shows the difference in complexity esti-
mation provided by various complexity estimators
healthy session and an attack session trace files of
about 2kbits. As shown in the figure, empirical
entropy and straight LZ78 estimation incorrectly dis-
cern healthy from attack behavior. OSCR widens the
curve over Zip compress (Zlib), providing a better
margin for error in discerning attack, despite the
fact that Zip compress provides a better compressor

Table 4 Symbol Distributions

Substring Symbol Probability New Code

001 A 0.5 0

1 B 0.3 10

0 C 0.2 11

Table 5 Encoded Lengths for several short strings.

String LZ78 OSCR Model

0100101101001011010010110 40 0.20 010,11,0

1010101010101010101010101 30 12 1010,1

1110110111101101110111101 30 20 101,11,1

Figure 48. Huffman Tree
for Symbol Partition.

45

 2. Discussion

as shown in Figure 50. Further data must be taken to
validate this gain. Additional gains in OSCR com-
pression can be made through optimizing the model
cost beyond simple sum of the codeword length
(Figure 50).

2.7 DETECTING DISTRIBUTED DENIAL-OF-
SERVICE ATTACKS USING KOLMOGOROV
COMPLEXITY METRICS

Distributed denial-of-service attacks are caused by
the attacker flooding the target machine with a tor-
rent of packets originating from a number of
machines under the attacker’s control. These
machines are called ‘zombies’. The attacker typically
uses ICMP or UDP packets for the attack. Typical
detection techniques [156, 157] for these types of
attacks rely on filtering based on packet type and
rate. Essentially, the detection software attempts to
correlate the type of packet used for the attack, be it
ICMP or UDP, with the destination. While these
techniques have reasonable success, they are not

very flexible. For example, these techniques will fail
if a new type of packet is used for attack or if the
attack consists of a traffic pattern that is a combina-
tion of ICMP and UDP packets. In such cases, packet
profiling is defeated. This report describes an
approach based on fundamentals of information
complexity that is both flexible and effective.

Stated as simply and succinctly as possible, we
hypothesize that information, comprising observa-
tions of actions with a single root cause, whether
they are faults or attacks, is highly correlated. Highly
correlated data has a high compression ratio. The
Kolmogorov Complexity, K(x), of a string of data
measures the size of the smallest program capable of
representing the given piece of data [10]. It mea-
sures the degree of randomness for the given data.
The length of the shortest program to generate a
completely random string is equal to the size of the
string itself. For all other cases, it is smaller than the
size of the string and the program size becomes
smaller as more regularity or pattern is discernible
from the string. A side effect of this measure is its
ability to represent the correlation between dispar-
ate pieces of data. This side effect is exploited to
design an effective method for detecting DDoS
attacks (Figure 51).

Approach
The DDoS attack detection algorithm makes use of a
fundamental theorem of Kolmogorov Complexity
that states: for any two random strings X and Y,

K(XY) <= K(X) + K(Y),………..(1)

where K(X) and K(Y) are the complexities of the
respective strings and K(XY) is the joint complexity
of the concatenation of the strings. Simply put, the
joint Kolmogorov complexity of two strings is less
than or equal to the sum of the complexities of the
individual strings. The equivalence holds when the
two strings X and Y are totally random i.e. they are
completely unrelated to each other. Another effect

Figure 49. Comparison of OSCR vs. Zip Compress for FTP data.

Figure 50. Comparison of OSCR vs. Zip Compress Compres-
sion Ratio.

Figure 51. Implementation in Magician Active Node.

46

2.7 Detecting Distributed Denial-of-Service Attacks using Kolmogorov Complexity Metrics

of this relationship is that the joint complexity of the
strings decreases as the correlation between the
strings increases. Intuitively, if two strings are
related, they share common characteristics and thus
common patterns, That knowledge can be har-
nessed to generate a smaller program that can repre-
sent the combined string.

 The concept of “Conservation of Complexity”
was introduced in [210]. This concept relates to the
ability to discern an attack by monitoring the com-
plexity change due to processes occurring in the sys-
tem and imposing bounds that identify
unauthorized processes—noted by complexity
changes that are either too great or too small to be
from authorized processes. Figure 52 describes the

concept of conservation of complexity. This concept
was first applied to a closed system, where the pro-
cesses are known and able to be monitored by com-
plexity probes. In the distributed case of a denial of
service attack, the process is not known, but bounds
on the differential complexity allowed by the distrib-
uted processes are still able to be enforced.

The above given by inequality (1) is exploited to
distinguish between concerted denial-of-service
attacks and cases of traffic overload. The assumption
is that an attacker performs an attack using large
numbers of similar packets (in terms of their type,
destination address, execution pattern etc.) sourced
from different locations but intended for the same
destination. Thus, there is a lot of similarity in the
traffic pattern. A Kolmogorov complexity based
detection algorithm can quickly identify such a pat-
tern. On the other hand, a case of legitimate traffic
overload in the network tends to have many differ-
ent traffic types. The traffic flows are not highly cor-
related and appear to be random. Therefore, our
algorithm samples every distinct flow of packets (dis-
tinguished by their source and destination
addresses) to determine if there is a large amount of

correlation between the packets in a flow. If it is
determined to be so, then all suspicious flows at the
node are again correlated with each other to deter-
mine that it is indeed an attack and not a case of a
traffic overload.

The architecture for DDoS detection has been
implemented in an active network for ease of
deployment and flexibility in testing. As shown in
Figure 53, it consists of a packet complexity probe

(described in detail in the next section) associated
with every traffic flow through a node that periodi-
cally samples packets in the flow. For the collected
sample, the probe calculates the complexity differ-
ential for the sample. Complexity differential is defined
as the difference between the cumulative complexities of
individual packets and the total complexity computed when
those packets are concatenated to form a single packet. If
packets x1, x2, x3,…,xn have complexities K(x1),
K(x2), K(x3),…, K(xn), then complexity differential is
computed as:

[K(x1) + K(x2) + K(x3) +…+ K(xn)] – K(x1x2x3…xn),

where K(x1x2x3…xn) is the complexity of the packets
concatenated together. If packets x1, x2, x3,…,xn are
completely random, K(x1x2x3…xn) will be equal to
the sum of the individual complexities and the com-
plexity differential will therefore be zero. However, if
the packets are highly correlated i.e some pattern
emerges in their concatenation, then the concate-
nated packet can be represented by a smaller pro-
gram and hence its complexity i.e., K(x1x2x3…xn)
will be smaller than the cumulative complexity. In
effect, we use the measure of the compressibility of
the packets accumulated in a given time interval to
determine correlation. If the complexity differential
is greater than a preset threshold for the flow, the
flow is marked as suspect and the collected sample is
referred to a Local Detector running on the node.

Figure 52. Principle of conservation of com-
plexity.

Figure 53. DDoS detection architecture.

47

 2. Discussion

The Local Detector receives all such samples
from various suspicious flows and correlates all the
samples together using the same complexity differ-
ential calculation. If there is only one suspect flow,
no correlation is performed. If the complexity dif-
ferential again exceeds the threshold, all suspect
flows (including the case of a single flow) are
referred to a Domain Detector that is running on
some other node on the local network domain. This
hierarchy of detectors cooperates to detect distrib-
uted denial of service attacks in the network itself.
This hierarchy is shown in Figure 53.

Complexity estimates
While it is known that, in general, Kolmogorov com-
plexity is not computable, various methods exist to
compute estimates of the complexity. The packet
complexity probe described in the previous section
uses an entropy calculation technique for estimation
of complexity. The Kolmogorov Complexity estima-
tor, currently implemented as a simple compression
estimation method, returns an estimate of the small-
est compressed size of a string. The complexity K(x)
is computed using the entropy H(p) of the weight of
ones in a string. Specifically, K(x) is defined in Equa-
tion 1.A where is the number of 1 bits and is the
number of 0 bits in the string whose complexity is to
be determined. Entropy H(p) is defined in Equation
1.B. The expected complexity is asymptotically
related to entropy as shown in Equation 1.C. See
[10] for other measures of empirical entropy and
their relationship to Kolmogorov complexity.

The complexity estimation technique used here is
not the best because empirical entropy is actually a
very poor method of complexity estimation. For
example, the estimate for the string

101010101010101010101

and a completely random string with equal numbers
of 1’s and 0’s is the same under empirical entropy.
More accurate estimates for complexity will only

serve to improve our method for DDoS detection.
See[162] for an innovative and improved method
for complexity measurement. In future work, this
technique will be used in the complexity probe and
the performance of the algorithm will be compared
with respected to the two techniques.

Experimental results
We compared our technique to a prototype packet
counting algorithm for DDoS detection and found
that our technique is better discriminates traffic pat-
terns. We used our Magician-based [159] active net-
work [160] test bed for the experiment for two
reasons. It is quite easy to set up a desired topology
for the network, as well as control and measure per-
formance using an active network. Secondly, it is eas-
ier to embed our complexity probes, which are
written in Java, inside the Java-based Magician ker-
nel as opposed to embedding them inside commer-
cial routers. The results, however, can be
extrapolated to real traffic settings (Figure 54).

The experimental setup consisted of a set of
active nodes arranged in the topology shown in.
Node AH-1 continuously generates traffic consisting
of audio packets destined for node AN-2. The load
induced by this traffic is high enough that it is regis-
tered at node AN-1 as a ‘suspicious’ flow i.e. a traffic
flow whose complexity differential exceeds the
threshold. The load induced by this traffic flow is
kept constant throughout the experiment. Node
AH-2 generates the attack flow. The load induced by
the attack flow is varied to determine the perfor-
mance of the algorithms. The experiment is run
twice, once with only the attack source on (node AH-
2 transmitting only) and the next time with both
sources on (both node AH-1 and node AH-2 trans-
mitting). The rationale is that an attack is essentially
a sustained overload induced for some time interval.

1.A

1.B

1.C

K̂ x() l x()H≈() x#1
x#1 x#0+
------------------------- 
 

2
l x()()log+

H p() p
2

p 1.0 p–()
2

p 1.0 p–()–log–log–=

H X() P X x=()K X()
l x() n=
∑≈

Figure 4. Topology for experiment

Figure 54. Topology for experiment.

48

The purpose of the experiment is to determine the
effectiveness of the two techniques in separating and
identifying an attack in the presence of background
traffic.

Figure 55 and Figure 34 show the performance of
the packet-counting and complexity-based
approaches as measured against the load induced by
the two sources (in packets per second) described
above. Figure 55 shows that the packet-counting
metric cannot discriminate between an attack and a
true overload. When the audio source is transmit-
ting in conjunction with the attack source, any
threshold set by the packet-counting algorithm run-
ning on node AN-1 will be exceeded leading to the
false conclusion that the node is under attack. For
example, based on the attack pattern only (blue
curve), we decide to set the threshold at 70 pack-
ets/s for a load of 0.6. When the audio source is
introduced, the combined traffic trips the same
threshold at a load of only 0.4, which is a false posi-
tive. Figure 54 below shows the complexity differen-
tial versus load curve for a given sampled time
interval, which in this case was 10 seconds. The com-
plexity-based metric does not change its behavior
when a combination of attack and traffic sources is

used. This is because the attack traffic dominates the
combined flow and hence the complexity differen-
tial roughly equal to that observed when only the
attack flow existed. Therefore, the complexity-based
approach is more accurate in separating false alarms
from true attacks because it can conserve salient pat-
terns of a traffic flow.

Figure 55. Performance of packet-counting metric.

49

3. Kolmogorov Complexity as a Fundamental
Metric Enabling Vulnerability Analysis

3.1 AUTOMATED DISCOVERY OF
VULNERABILITIES WITHOUT A PRIORI
KNOWLEDGE OF VULNERABILITY TYPES

The design of the vulnerability analysis tool consists
of three logical layers as shown in Figure 56. Com-

plexity measurement probes within the actual system
form the first layer. The results from the probes are
used to build a K-Map. The K-Map consists of
a matrix, where C is the set of informa-
tion system components. The matrix represents a
complete representation of “attack” components
crossed with target components. The diagonal val-
ues are zero because the complexity of a compo-
nent, assuming the component has already been
compromised, is zero. Components that cannot
physically be accessed from another component
have an infinite complexity value. Note that the K-
Map values change as an attack progresses. The com-
plexity values are updated using conditional Kol-
mogorov Complexity estimates from Equation (1.2).
This updates insecurity flow given that an attacker
has partially penetrated the system and has gained
knowledge of the compromised components. The
result of this matrix can be viewed as a complexity
surface as shown in [57]. The top layer consists of
vulnerability states and transition values obtained

from layer two. Relative complexity estimates are
used to quantify the resistance to attack along the
edges of the graph and the nodes are the state of an
attack.

A model information system has been imple-
mented in Mathematica [102]. Mathematica pro-
vides an ideal environment for experimenting with
symbolic mathematical concepts and algorithmic
information theory in general. The goal is to deter-
mine the vulnerability not only of the overall system,
but also of system components. Vulnerability analysis
must be possible without a priori knowledge about
system operation or knowledge of particular types of
vulnerabilities. Expert systems and vulnerability
analysis tools that rely upon rules identifying partic-
ular types of vulnerabilities are inherently brittle.
Such tools provide good performance when known
attacks are applied, however, they fail catastrophi-
cally, and are therefore useless, against an innovative
attacker.

Every information system is assumed to take data
of some form as input, process the data and return
data as output. Every information system can be
defined as a mathematical operation. Information
systems developed by humans today tend to be
highly structured in order to be tractable in their
development and maintenance. Generally, there are
well-defined data flows and processing functions
within the information system. The system is com-
posed of a hierarchical composition of functional
units. For these systems, one can imagine complexity
probes located at the input and output of every
functional unit in the system. This allows determina-
tion of the vulnerability of each process and data
stream at a high degree of granularity. This provides
a complexity-based vulnerability map for the system.
A potential attacker would be unlikely to have such a
detailed understanding of a target information sys-
tem. An optimization to this technique is to limit
probe locations to only those locations likely to be
observable to an attacker.

System under evaluation: the active network
In the remainder of this paper, a specific example is
used to communicate the architecture and opera-
tion of the vulnerability analysis framework. The spe-

Figure 56. Logical view of complexity-based vulnerability
analysis process.

C C× K L→

50

r--v-^-..

Insecurity Flow Graph

Complexity Surface

cific example focuses upon an active network [102]
in which a distinction is made between an active net-
work and a legacy, or passive, network. This environ-
ment is used to emphasize that information
assurance laws must be able to deal with many alter-
native and dynamically changing representations of
information.

With regard to active packets and information
theory, passive data is simple compressible data;
active packets are a combination of data and pro-
gram code whose efficiency can be estimated by
means of Kolmogorov Complexity. A brief concep-
tual view of Kolmogorov Complexity for active net-
work packet optimization is demonstrated in
Figure 57 in which the same information is pre-

sented with varying proportions of code to data. The
length of the information varies with the hypotheses
used to represent the information within the packet.
The shortest possible representation is the estimate
of the packet complexity [109]. The active network
Kolmogorov Complexity estimator is currently
implemented as a quick and simple compression
estimation method. The Kolmogorov Complexity
estimator returns an estimate of the smallest com-
pressed size of a string. It is based upon computing
the entropy of the weight of one bits in a binary
string. Specifically it is defined in Equation 6 where
x#1 is the number of 1 bits and x#0 is the number of
0 bits in the string whose complexity is to be deter-
mined. Entropy is defined in Equation 7. See [103]
for other measures of empirical entropy and their
relationship to Kolmogorov Complexity. The

expected complexity is asymptotically related to
entropy as shown in Equation 8.

Observe an input sequence at the bit-level and
concatenate with an output sequence at the bit-level.
This input/output concatenation is observed for
either the entire system or for components of the
system. Low complexity input/output observations
quantify the ease of understanding by a potential
attacker. Previous work has demonstrated the use of
Kolmogorov Complexity for Distributed Denial of
Service (DDoS) attack detection [104]. Definition 6
explicitly states the means of measuring the com-
plexity of a system component, or protocol interac-
tion, to a potential attacker.

(6)

(7)
(8)

In the remainder of the paper, excerpts from a
Mathematica Notebook are included. The excerpts
contain code using common mathematical and pro-
gramming constructs, and therefore should be intu-
itively obvious without requiring knowledge specific
to Mathematica. Any Mathematica specific details
are explained in the text. As a specific example of
the algorithmic capabilities of active networks, con-
sider the transmission of an estimate of π. One could
choose to send π as an extremely large number of
digits. Or in contrast, one could send a smaller algo-
rithm capable of generating π to an arbitrary num-
ber of digits. Consider an illustration of this concept
in more detail. The Mathematica code, {{#1/#2 &},
{22.,7.}}, represents an unnamed function that
divides the first argument by the second argument;
the function implements 22/7. Consider that the
code ({#1/#2 &}) and the data ({22.,7.}) remain
unevaluated and are transmitted together. This rep-
resents an active packet; it contains part code and
part data. The RUN function evaluates the function
and returns the result. The result in this case is static
data, a legacy data packet. Mathematica code that

Figure 57. Same active packet information; varying hypothe-
ses (proportion of code to data).

Definition 6:
Complexity-
based
Vulnerability
Metrics

Vulnerability is inversely proportional
to K(x[opstart:opend])/l(x[opstart:opend])
where opstart is the bit at which an
operation to be discovered within an
information system begins, and opend is
the last bit in an attacker’s observation

K̂ x() l x()H≈() x#1
x#1 x#0+
------------------------- 
 

2
l x()()log+

H p() p
2

p 1.0 p–()
2

p 1.0 p–()–log–log–=

H X() P X x=()K X()
l x() n=
∑≈

51

 3. Kolmogorov Complexity as a Fundamental Metric Enabling Vulnerability Analysis

analyzes the characteristics of algorithmic and pas-
sive information transmission is shown in Figure 58.

The active packet is defined as {{#1/#2 &}, {22.,7.}},
which contains a pair of values and the code neces-
sary to perform division. The legacy, or passive
packet, is defined as RUN{{#1/#2 &}, {22.,7.}}, which
pre-computes the result of the division and transmits
the same information in non-algorithmic form. The
argument defined as {{1,2,3,4},{4,3,2,1}} identifies the
links traversed by the active and passive packets
respectively. In this case, the first packet begins by
crossing link one and the second packet begins by
crossing link four. The argument defined as
{100,100,1000,1000} indicates link capacities for
links one, two, three and four. Thus, the first packet
transmits both code and data that generates the
intended information, while the second packet
transmits raw data only. The result of executing the
function below is load and processing time spent on
each link and node for each packet. In Figure 59,

the load induced by sending the estimate of π using
AnetSim in Figure 58 is plotted for each link.
Clearly, the algorithmic representation of the infor-
mation is more compact and uses less link capacity.

In fact, this reinforces the fact that by knowing
how to compute π, one could build a more compact
representation. This demonstrates Occam's Razor

for a useful purpose, information compression. This
has facilitated study of active (algorithmic) versus
passive transmission of information. For example,
we allow the ratio of data to code to change for the
same information as the packet traverses the net-
work in a manner that optimizes both link capacity
and node processor speed.

Complexity surface: the Kolmogorov
Complexity map
The GE Global Research active network test bed
implements complexity probes as part of the active
execution environment. The choice was made to
embed the complexity probe in the execution envi-
ronment rather than as an active application
because it is necessary to examine the content of
active packets before they reach the execution envi-
ronment. In the Mathematica simulation, each com-
ponent of the active application contains probe-
input points through which bit level input and out-
put is collected. A complexity estimator based upon
the simple inverse compression ratio from Equation
(1.4) is used to estimate complexity in the density
metric. Figure 60 and Figure 61 graphs result from

density estimates taken of accumulated input and
output of three separate components of the active
network application. The graphs show the complex-
ity of bit-level input and output strings concatenated
together. That is, every input sequence is concate-
nated with an output sequence and the density of
the sequence is recorded at bit-level.

The input/output concatenation is generated
either for individual components of the system or
for a composition of components. If there is low
complexity in the input/output observation pairs,
then it is likely to be easy for an attacker to under-
stand the system. The X-axis is the number of input

Figure 58. Static versus active information in the Mathematica
active network simulator.

Figure 59. Algorithmic versus static active network informa-
tion load.

Figure 60. Component complexity for components B, C and E.

52

3.1 Automated discovery of vulnerabilities without a priori knowledge of vulnerability types

and output obser vations concatenated to form a sin-
gle string of bits. From Figure 61, it would appear
that Component E is most vulnerable due to its con-
sistently low complexity while Component B appears
to be the least vulnerable due to its larger complex-
ity. These results make intuitive sense because Com-
ponent E simply forwards data without any form of
protection while Component B adds noise to the
data. This vulnerability method does not take into
account whether a component reduces or increases
complexity. In other words, whether the change was
endothermic or exothermic complexity. These
results demonstrate how vulnerabilities are systemat-
ically discovered using complexity. Vulnerabilities
can be quantified to a value within the bounds of the
complexity measure error.

In order to develop the Kolmogorov Complexity
Map (K-Map), consider the topology in more detail.
Figure 62 shows the resulting densities inserted into

a Mathematica graph object. The graph object
allows graph theory related analyses to be applied.
The directed graph Figure 63 shows the relationship
among the vulnerabilities. The START state, located
in the center of the topology, represents a location
outside the system. In Figure 64 a matrix is gener-
ated that shows the cost, in terms of complexity, of
traveling from any node to any other node in the K-
Map. In Figure 65, the function CoordVul computes a
maximum flow through the K-Map graph using the

node positions as shown Figure 63. Density
(K(x)/l(x)) acts as a resistance, while its inverse acts
as conductance, supporting insecurity flows as illus-
trated in Figure 66. The resulting flow matrix in
Figure 68 shows the maximum flow through each
link. Figure 68shows the complexity surface of the
resulting flows. Higher areas correspond to less vul-
nerable states, while lower areas correspond to more
vulnerable states. Note that in the following contour
maps, areas of infinite height are simply shown with-
out a surface. By comparing Figure 63 and
Figure 68, it is apparent that the START state, the
infinite mountain in the center of the topology, is

Figure 61. Mean component complexities for B, C and E.

Figure 62. Kolmogorov Complexity map (K-Map).

Figure 63. System under analysis: components and topolo-
gy.

Figure 64. Minimum complexity paths matrix.

Figure 65. Insecurity flow graph.

53

 3. Kolmogorov Complexity as a Fundamental Metric Enabling Vulnerability Analysis

invulnerable, which makes intuitive sense. State E is
the weakest individual component and lowest area
on the right side. Note that while State C cannot be
directly attacked from the START state, it can be

attacked via states B and E, located in the upper and
lower right side of the figure respectively. Thus, B
and E have a relatively intermediate level of vulnera-
bility. In the insecurity flow contour shown in
Figure 69, density is resistance and all possible flows

from and to every node are summed to obtain an in
security level. While Node C is assigned infinite com-
plexity as shown in Figure 68, it actually is the most
insecure component given that flows exist from
Nodes B and E.

3.2 A PRIORI VULNERABILITY ANALYSIS: THE
NETWORK INSECURITY PATH ANALYSIS
TOOL

The Network Insecurity Path Analysis Tool (NIPAT)
[105], like many security tools, assumed a priori
knowledge of vulnerabilities. It then estimated secu-
rity flow by assigning probabilities based upon the
number of opportunities for an attacker to advance
from one vulnerability to another. An example of
NIPAT operation is shown in Figure 70. In this fig-
ure, 2,000 a priori defined vulnerabilities found on a
few nodes of a network that were thought to be rea-
sonably secure are displayed. The hosts upon which
vulnerabilities reside and the a priori defined type of
vulnerability are displayed. The number along each
edge of the graph represents the number of oppor-
tunities available to the attacker to reach the next
vulnerability. This information is gathered from net-
work security software agents that are pre-pro-
grammed to identify predefined types of
vulnerabilities. The security vulnerability graph for a
typical network can be extremely dense, however,
the object-oriented nature of the security model is

Figure 66. Grid-based representation of information assur-
ance.

Figure 67. Flow results matrix.

Figure 68. Complexity surface for system in Figure 84.

Figure 69. Insecurity flow contour of system in Figure 63.

54

useful in choosing the level of abstraction required.
For example, it may be possible to display the vulner-
ability graph for Unix hosts in general and to hide
the details of individual Unix variants. NIPAT deter-
mines the degree to which specified targets within
the network can be compromised. The vulnerability
chain is displayed as a directed graph. Nodes repre-
sent vulnerabilities whose security may be compro-
mised, and edges represent paths from vulnerability
to vulnerability. The larger the value of the edge
label, the greater the vulnerability. The focus of this
effort is on the mathematical representation of
information assurance, thus, the underlying data-
base and data gathering agents are not discussed in
detail in this paper.

Two algorithms are demonstrated; the first is a
probabilistic analysis and the second is a maximum
flow analysis. Let us start with the probabilistic analy-
sis. Select a node to be the target of the attack; in
this case we have selected Host C Vuln 4. Select a
specific attack entry point anywhere in the system
and add the attacker to the graph. A text window
appears stating the probability of successful attack
(0.729) followed by the graph shown in Figure 71
that shows the most probable path of attack high-
lighted. The analysis is re-executed using the maxi-
mal flow algorithm. Host C Vuln 4 is again selected
as the target. A text window appears displaying the
maximum flow (6.0) as well as detailed graphical
results shown in Figure 72. The edge values have
been changed to show the maximum flow along
each edge towards the target node. In this case there
is a flow of 1.0 and a flow of 5.0 that can reach the
target node.

Complexity-based insecurity flow
Assigning probability of exploitation for vulnerabili-
ties based upon the assumption that all vulnerabili-
ties can be explicitly discovered a priori and placed in
data or knowledge base is a fallacy for several rea-
sons. First, a brute force approach that attempts to a
priori explicitly identify all possible vulnerabilities is
highly system dependent and results in a combinato-
rial explosion. Second, assigning a level of effort
required to exploit vulnerabilities is highly subjec-
tive. Third, failure to identify even a single vulnera-
bility can result in catastrophic performance failure.
Such a brute force technique is very brittle as shown
in the next section. Fourth, once such inaccurately
quantified probabilities have been assigned, the
probabilistic mechanism is an unsuitable technique.
For example, the simple assumption does not follow

Figure 70. A grid-based tool action. Figure 71. Most likely attack path.

Figure 72. Maximum flow paths.

55

r CruHNOOtt r ClMOEIKai

C SalHINDibs C SeieclEilpss

S SlIMHoMIREOgil

D

'I =""•'!

«,.n
phi BO

e,™. jivj «J ^

HDelj»_OD50leleFin

L

□

 3. Kolmogorov Complexity as a Fundamental Metric Enabling Vulnerability Analysis

that composing components serially results in a
probability of successful attack quantified by the
product of the probabilities. Mutual information
between the components can result in a much
higher probability of successful attack.

Using results from the K-Map described in the
previous section, it is possible to address these prob-
lems by retrofitting NIPAT to use the complexity-
based vulnerability framework. Both a most likely
path and a maximum flow algorithm are applied in
this experimental complexity-based vulnerability
analysis tool. The most likely path is determined by
finding the lowest complexity path from a given
attack point to a given target point. The maximum
flow algorithm assumes that lower complexity paths
have a greater capacity.

The question arises as to what flow means in terms
of complexity. First, the entire foundation of com-
plexity-based vulnerability analysis rests upon the
likelihood, or probability, of attack being successful
upon the low complexity locations of an information
system as per Definition 6. The complexity probe
values are displayed as links in the complexity tool
display shown in Figure 71. The values of the links
are l(n)/K(n) and these values are normalized to 1.0
for each node in order to obtain a probability of suc-
cessful attack upon each link. The maximum flow
algorithm provided by this tool indicates not only
the vulnerability of each component, but also the
optimal placement of resources by an attacker to
maximize the likelihood of a successful attack.

Safeguard optimization techniques
We assume that vulnerability has been calculated by
NIPAT to be either the maximum insecurity flow or
probability of successful attack, where S represents
security safeguards, C(S) is the cost of security, and L
is the cost constraint or some other hard resource
limit. Next, we discuss the cost in terms of impact on
users. Here it is strictly a financial cost or other
resource constraint. Objective Function 1 shows how
the optimal security safeguard allocations can be
determined. V(S) is l(S)/K(S). Let CS represent the
network service to customers, with a minimum
accepted quality, Q. Let V(S,A) be the vulnerability of
the network to a particular attacker, A. Then Objec-
tive Function 2 shows the optimal network response
given the current state of the attack.

It is possible to use NIPAT to study various strate-
gies of both the defensive and offensive players in a
network attack. Once an attack has been detected,

the network command and control center can
respond to the attack by repositioning security safe-
guards and by modifying services used by the
attacker. However, cutting off services to the attacker
also impacts legitimate network users A careful bal-
ance must be maintained between minimizing the
threat from the attack and maximizing service to
customers.

The distribution of insecurity information—Another
dimension of vulnerability analysis involves detect-
ing vulnerabilities that change over time. The net-
work monitoring tool quantifies the vulnerability of
a system in terms of percent of patches that fail to
have the correct signature, percent of files which are
accessible to others besides the owner and percent
of passwords which can be guessed with a given pass-
word generation tool. Clearly, vulnerability checks
such as these increase the security of the network.
Both the type of information gathered and the fre-
quency with which the information is updated quan-
tify the effectiveness of a network monitoring
strategy. If the information is not updated frequently
enough, an attacker may have penetrated network
security and left before network security is aware of
the situation.

An estimate of the effectiveness of the monitoring
system is based on a profile of network security
attacks on the Internet and the following parame-
ters: time to monitor patches, Trojan horses, pass-
words, and any other vulnerabilities. The average
attack rate, based on Internet incident reports from
an anonymous site for a six-year period, is five
attacks per month. Additionally, the Defense Infor-
mation Systems Agency has determined by experi-
mental means [107] that only 0.7 percent of
incidents are actually reported. Thus, for each path
in the network security vulnerability chain, the cost
to the attacker is the probability of being detected
multiplied by the cost function that the additional
monitoring provides.

The approach to measuring the complexity of a
system results in determining the ease with which a
potential attacker can understand the system. It does

Objective Function 1:
Vulnerability and Cost

min V(S)
s.t.C(S) < L

Objective Function 2:
Vulnerability and Cost while
Maintaining QoS.

min V(S,A)
s.t.C(S) > Q, C (S) <
L

56

3.3 Introduction

not directly account for the fact that information
about the target system can be obtained by a poten-
tial attacker in algorithmic form, that is, in the form
of an attack tool. Such a tool does not require the
attacker to understand its operation. The attack tool
is like an active packet, or a parasite that depends
upon its host for transportation. This is distinct from
a virus, whose primary function is replication and
transport. For example, an attacker may have little
understanding of a particular system, yet the
attacker may download an attack tool that enables a
successful attack. Thus, the distribution of attack
knowledge needs to be considered. Once an attack
tool is in the hands of an attacker, the apparent com-
plexity is greatly reduced. There is an interesting
feedback mechanism here; data that can reduce the
apparent complexity to a potential attacker needs to
be kept secure by the defender. Once obtained by an
attacker, a significant drop in apparent complexity
occurs, potentially leading to further significant
reduction in apparent complexity as more vulnera-
bility information is obtained and disseminated to
other attackers.

One might view the evolution of complexity in
the following terms. An information system is built.
Initially, an attacker discovers its least complex com-
ponents. The attacker decides to automate his attack
(active) and/or publish the mechanism to accom-
plish the attack (passive). This information is dis-
seminated through the population. Meanwhile the
information system defenders, usually after consid-
erable delay, discover the attack mechanism and
patch the hole. The population of attackers, build-
ing upon their knowledge, exploits the next least
complex link from their view in the information.
The defenders eventually close this hole.

The cycle continues ad infinitum. The cycle of
attack and defense can be viewed through complex-
ity as a cycle, or evolution of complexity. Low com-
plexity portions of a system will eventually be
learned and disseminated by an attacker. To account
for this dissemination of low complexity informa-
tion, defenders reinforce the low complexity areas
with more complexity. The results of this project
allow system developers to understand not only
where the vulnerable portions of the system are
located, but to engineer their systems in such a man-
ner as to control the cycle. This process can be mod-
eled as low complexity portions of an information
system that evolve in complexity over time.

3.3 INTRODUCTION
The vulnerability analysis technique presented in
this paper takes into account the innovation of an
attacker attempting to compromise an information
system. A metric for innovation is not new, William
of Occam suggested a technique 700 years ago [94].
The salient point of Occam’s Razor and complexity-
based vulnerability analysis is that the better one
understands a phenomenon, the more concisely the
phenomenon can be described. This is the essence
of the goal of science: develop theories that require
a minimal amount of information to be fully
described. Ideally, all the knowledge required to
describe a phenomenon can be algorithmically con-
tained in formulae, and formulae that are larger
than necessary lack of a full understanding of the
phenomenon. The ability of an attacker to under-
stand, and thus successfully innovate a new attack
against a system component, is directly related to the
size of the minimal description of that component.

Consider an information system attacker as a sci-
entist trying to learn more about his environment,
that is, the target system. Parasitic computing [95] is
a literal example of a scientist studying the opera-
tion of a communication network and utilizing its
design to his advantage in an unintended manner.
The attacker as scientist generates hypotheses and
theorems. Theorems are the attacker’s attempts to
increase understanding of a system by assigning a
cause to an event, rather than assuming all events
are randomly generated. If theorem x, described in
bits, is of length l(x), then a theorem of length l(m),
where l(m) is much less than l(x), is not only much
more compact, but also 2(lx)-(lm)times more likely to
be the actual cause than pure chance [94]. Thus, the
more compactly a theorem can be stated, the more
likely the attacker is to be able to determine the true
underlying cause described by the theorem.

Motivation
Imagine a vulnerability identification process that
consisted of the following: First, wait for an informa-
tion system to be attacked. Then analyze the attack,
assuming, of course, the system survives the attack,
can still be trusted and the attack can even be
detected. Finally, if the information system is still not
compromised, add the attack information to one’s
knowledge base.

This technique would be unacceptable to most
people, but it is essentially the vulnerability analysis
technique used today. Information assurance, and

57

 3. Kolmogorov Complexity as a Fundamental Metric Enabling Vulnerability Analysis

vulnerability analysis in particular, are difficult prob-
lems primarily because they involve the application
of the scientific method by a defender to determine
a means of evaluating and thwarting the scientific
method applied by an attacker. This self-reference of
scientific methods would seem to imply a non-halt-
ing cycle of hypothesis and experimental validation
being applied by both offensive and defensive enti-
ties, each affecting the operation of the other. Infor-
mation assurance depends upon the ability to
discover the relationships governing this cycle and
then quantifying and measuring the progress made
by both an attacker and defender.

A metric and framework are required for quanti-
fying information assurance in an environment of
escalating knowledge and innovation. Progress in
vulnerability analysis and information assurance
research cannot proceed without fundamental met-
rics. The metrics should identify and quantify funda-
mental characteristics of information in order to
guarantee assurance. A fundamental definition of
vulnerability analysis is formulated in this paper
based upon attacker and defender as reasoning enti-
ties, both capable of innovation. Truly innovative
implementations of attack and defense lead to the
evolution of complexity in an information system.
Understanding the evolution of complexity in a sys-
tem enables a better understanding of where to mea-
sure, and how to quantify, vulnerability. In turn, this
leads towards a calculus of information complexity.
The design and implementation of a complexity-
based technique is presented as a vulnerability analy-
sis tool for automated measurement of information
assurance. The motivation for complexity-based vul-
nerability analysis comes from the fact that complex-
ity is a fundamental property of information and can
be universally applied.

Components of the analysis
The presentation and analysis of a Kolmogorov
Complexity-based vulnerability analysis framework
must accomplish several goals. As initially stated, the
vulnerability analysis technique must demonstrate
the ability to account for the innovation of an
attacker. The presentation should also discuss the
relationship to previously defined properties of secu-
rity. The technique should be based upon funda-
mental properties of information, rather than suffer
from the combinatorial explosion that occurs when
explicitly examining all possible events generated by
specific systems. The vulnerability results should

make intuitive sense; vulnerability is reduced by
increasing the apparent complexity of access to
information from potential attackers while increas-
ing vulnerability for less complicated, or in some
sense shortest paths of access to information. In
other words, low complexity implies high vulnerabil-
ity and high complexity implies low vulnerability.
The results should not only be intuitively clear, but
should support the rigorous definition of a metric
space.

Once this has been shown, a topological view of
vulnerability can be demonstrated. This is demon-
strated by means of a Kolmogorov Complexity Map
(K-Map) in which low complexity paths, which are
likely to be easy for an attacker to follow, are identi-
fied. The concept of a K-Map, or complexity grid, is
shown in Figure 73 and the K-Map for a specific

example is derived later in this paper.
Figure 73 may itself appear quite complex upon

first glance; however, focus upon individual parts of
the figure in a logical progression. Begin with the
information to be protected, which lies at the bot-
tom of the figure. Attacks are illustrated as the thin,
downward-pointing arrows attempting to penetrate
the system in order to manipulate the information.
Numerous safeguards, supposedly designed to pro-
tect the information and each designed to mitigate
particular types of attack, are shown as barriers with
various levels of porosity (inserted across the middle

Figure 73. Conceptual view of a vulnerability and attack de-
tection complexity grid.

58

(System)
Safeguards

(Data)
Information

„ Soft Hardened
(Lower K) ,|_arge K)

3.3 Introduction

of the figure). The overall complexity of the system
is illustrated by the surface contour located above
the information and safeguards. The complexity of
the system as a whole is comprised of the complexity
of several entities, namely: the information itself, the
complexity of the system in which the information
resides and the complexity of the safeguards. Inno-
vative attacks will be more likely to successfully pene-
trate those areas of low complexity with easier to
comprehend components of the system.

In addition, specific types of attacks, such as Dis-
tributed Denial of Service (DDoS) will appear as
warps in the complexity grid. This is due the inher-
ent system correlation in DDoS attack-streams. The
vulnerability analysis technique should be applicable
in a highly dynamic and amorphous information
environment. An active network environment is cho-
sen because information can be transmitted through
an active network while its proportion of algorithmic
content varies. In other words, static data, execut-
able code or various combinations of both can rep-
resent information. In addition, both forms of
information should have high assurance. The assur-
ance of their interaction at a low level within an
active network presents a nice challenge.

An example application of vulnerability analysis
should be demonstrated to validate the feasibility of
the framework. This paper ends by demonstrating
several applications enabled by the new vulnerability
analysis framework. The first application of vulnera-
bility analysis shows that the complexity-based vul-
nerability framework enables Brittle Systems
analysis. Brittle Systems analysis can be applied to
understand the trade-off in performance versus fail-
ure of security. Finally, another application shows
that complexity-based vulnerability analysis enables
the optimization of security safeguards.

Properties of security
There have been many attempts to define security
models that facilitate the proof of security
properties [96]. The results in this paper focus upon
what has been termed probabilistic, rather than pos-
sibilistic, security. Possibilistic security is concerned
with proofs that given security properties can never
be violated, while probabilistic security is concerned
with estimating the likelihood that properties will be
violated. The quantification of the insecurity that
results from the successful exploitation of areas of
weak security is referred to in this paper as vulnera-
bility.

The security framework generally assumes that
there are low-level and high-level users within a sys-
tem. The intuitive notion is that high-level users
should be secure from low-level users. Security prop-
erties include non-inference: low-level users should
not be able to infer information about high-level
users, non-interference: high-level users are prevented
from influencing the behavior of low-level users
(otherwise, low-level users could infer information
about high-level user activity), non-deducible output:
low-level users cannot distinguish the events causing
high-level users’ output, and finally separability: no
interaction or information flow is allowed between
low and high level users. Separability is too strong a
security property because it does not allow low-level
users to interfere with high-level users. This type of
interference is acceptable, since it is assumed that
information flow is allowed from low-level to high-
level users. The perfect security property allows infor-
mation to flow only from low to high-level users.

While in theory these properties are useful in
attempting to prove that a system is secure, anec-
dotal evidence suggests that few developers will
expend the effort required to ensure that their sys-
tems meet these properties. The number of events
that must be verified for possibilistic security results
in a combinatorial explosion. In contrast, this work
attempts to develop a quantification of the degree to
which a system has achieved perfect security using
fundamental properties of information, rather than
proving perfect security. Security properties such as
non-inference, non-interference, non-deducible
output, and separability, define various mechanisms
by which information flow, that is, information that
could be inferred by one class of user about another
class of user, is prevented.

Similarly to previous work in this area, results in
this work are based upon information flow gener-
ated by a low-level user, referred to as an attacker,
inferring information about higher-level users. It is
assumed that security is not discrete, but varies
throughout a system and that attackers will want to
follow paths of least resistance to obtain their objec-
tive. That is, an attacker will choose paths of least
resistance with the possible constraint of optimizing
for stealth or speed of attack. Probabilistic security
has been explored in the past, however, obtaining
values for probabilities of insecurity has generally
been ill defined. This paper uses Kolmogorov Com-
plexity [97] as an underlying means to estimate inse-
curity probabilities.

59

 3. Kolmogorov Complexity as a Fundamental Metric Enabling Vulnerability Analysis

3.4 VULNERABILITY METRICS WITH
PHYSICAL ANALOGS

Vulnerability is generally defined as the probability
of a successful attack multiplied by the damage done
by the attack. The paper focuses on predicting the
probability of successful attack against an informa-
tion system using fundamental properties of infor-
mation. Information properties with physical
analogs are explored because (1) they are likely to
yield laws of information that are fundamental to
information, not specific to individual systems, (2)
the properties provide deeper insight to informa-
tion assurance, and (3) they can be universally
applied. Information properties that have physical
analogs and that are candidates for fundamental
parameters upon which to build information assur-
ance techniques are briefly discussed in this section.

Volume
In his ground breaking 1949 paper, Shannon intro-
duced fundamental trade-offs and limitations on the
ability to transmit information across a channel dis-
turbed by Additive White Gaussian noise
(AWGN)[98]. This launched the science of informa-
tion theory that has transformed the study of com-
munications and coding of information. It also
prompted the use of the term “bit” of information,
which Shannon credits to J.W. Tuckey, into the
mainstream literature.

The idea that information can be quantitized into
bits (or sequences of yes or no answers to questions)
is now well accepted, and one measure of the size of
information is the number of bits used to convey the
information. Information compression coding -
both loss-less and lossy - as well as forward error cor-
rection coding, alters the size of the information in
terms of bits by removing or adding redundancy.
However, the unit of size, bits, is the term used to dis-
cuss the size of information, whether it is efficiently
coded, error prone or self-correcting. Thus, while it
is possible for information to change size without
altering content, size is a fundamental property of
information.

Entropy
Shannon entropy [98], also a fundamental property
of information, measures the uncertainty of a ran-
dom variable X based on the probabilities of each
outcome. The entropy of a distribution defines the
average per symbol compression bound in bits per
symbol using a prefix free code. Entropy is derived

from a given source distribution p of I symbols as
shown in Equation (9). Kolmogorov Complexity, to
be discussed in detail later, is estimated from an indi-
vidual sequence of information. These two parame-
ters are extremely powerful properties of
information that occur at a fundamental level.

(9)

Density, mass and energy
Density and mass, and their relation to energy, are
properties of matter that have parallel, and intu-
itively pleasing, meanings in the information
domain. Much research has taken place on the mini-
mal energy required by an attacker to mount a suc-
cessful attack. Density, like Kolmogorov Complexity,
may measure the ability of a sequence to be com-
pressed. Mass may simply represent the number of
ones in a sequence, and energy, as in thermodynam-
ics, may tie together quantities such as mass, density
or entropy. The goal is to find parameters that can
be observed directly from information sequences
and compare objective quantities on which to base
the science of information assurance. In the analyti-
cal framework developed in this paper, Kolmogorov
Complexity is analogous to mass that is used to for-
mulate a density metric.

Complexity
A contribution of the research presented in this
paper is to utilize complexity, Kolmogorov Complex-
ity in particular, as a fundamental property of infor-
mation for vulnerability analysis. The definition of
Kolmogorov Complexity rests upon the notion of a
Turing Machine program. The Turing Machine is
one of the most fundamental, general purpose com-
puting abstractions and is well known in computer
science. The Turing Machine consists of a seven-
tuple (Q, T, I, δ, b, q0, qf). Q is a set of states, T is a set
of tape symbols, I is a set of input symbols, b is a
blank, q0 is the initial state, qf is the final state, d is
the next move function, d maps a subset of Q × Tk to
Q × (T × {L, R, S})k. L, R, and S indicate movement of
the tape to the left, right, or remaining stationary,
respectively. There can be multiple tapes. Thus d
implements a “next move” function. Given a current
state and tape symbol, d specifies the next state, the
new symbol to be written on the tape and the direc-
tion to move the tape. One approach to the study of
security is to consider the Turing Machine program
as a representation of normal system operation. In

H X() pi 2 pi()log
i 1=

l

∑–=

60

3.4 Vulnerability Metrics with physical analogs

such an approach, if the T uring Machine program
recognizes, or accepts, an input string, then a user
has gained access to the system. If the Turing
Machine program accepts a string that we did not
anticipate (Si), then the system is vulnerable, as
stated in Definition 1. Clearly, the Turing Machine
program is an abstract representation of any proto-
col implementation, or operating component opera-
tion. The set of unanticipated input strings that is
accepted is the vulnerability of the component (V)
as shown in Lemma 1.

Throughout this paper the assumption is made
that an attacker has the objective of exploiting any
vulnerability that requires the attacker to under-
stand enough of the component to design a system
attack. The attacker must determine the function
performed by the Turing Machine program. In this
case, the attacker is assumed to have the ability to
observe every member of the input language in
order to deduce operation by viewing the output.
The attacker is actually inferring d. As d is inferred,
more opportunities for attack may present them-
selves.

Turing Machines and Kolmogorov Complexity
Information must be accessible to legitimate users
while access is denied to potential attackers. This is
accomplished by increasing the apparent complexity
of access to information while providing legitimate
users with enough a priori knowledge to reduce the
apparent complexity. This leads one to conclude
that complexity itself is a useful metric. However, the
search for an absolute measure of complexity is a
problem that may be equally as difficult as quantify-
ing information assurance. There is a good reason
for this; they are, in a sense, one and the same. The
results in this paper demonstrate how complexity
can be estimated for use as a system-wide vulnerabil-
ity metric.

Kolmogorov Complexity is a measure of descrip-
tive complexity that refers to the minimum length of
a program such that a universal computer can gen-
erate a specific sequence. Kolmogorov Complexity is
described in Equation 10, where j represents a uni-
versal computer, p represents a program, and x rep-
resents a string. Universal computers can be equated
through programs of constant length; thus a map-
ping can be made between universal computers of
different types. The string x may be either data or
the description of a process in an actual system.
Unless otherwise specified, consider x to be the pro-
gram for a Turing Machine described in
Definition 1.

(10)

(11)

Conditional Complexity, in Equation 11, quanti-
fies the complexity of string x, given string y. Intu-
itively, it is the additional complexity of string x
beyond that in string y. Conditional Complexity is
used in developing the K-Map. A fundamental met-
ric, based upon Kolmogorov Complexity, used
throughout the remainder of this paper is density.
Density and its inverse, dispersion, are shown in Def-
inition 2. If x represents a program, then dispersion
can be considered inefficiency in implementation in
terms of size. A disperse implementation of a system
has more transitions and states than necessary. Thus,
there is greater opportunity for an attacker to find a
weak point in the system. However, once an attacker
breaks into a disperse system, there will be, on aver-
age, more energy, that is, longer string length,
required to reach the attacker’s target. Greater dis-
persion should imply reduced brittleness (Defini-
tion 8) of resistance to attack.

Complexity as a Vulnerability Metric
Information assurance is increased by increasing the
apparent complexity of access to information from
potential attackers while providing legitimate users
the least complex, or in some sense the shortest

Definition 1:
System
Vulnerability

If a Turing Machine program
recognizes, or accepts, a string, then
the user entering that string is defined
to have gained access to the system. If
the Turing Machine program accepts a
string that was not anticipated in the
initial design of a system (Si), then the
system is vulnerable.

Lemma 1:
Secure
Component

Given V= Si, a component is secure if
and only if V=Ø.

Definition 2:
Density

The density of x is K(x)/l(x), where l(x)
is the length of x. Dispersion is the
inverse of density.

Kϕ x() min l p()
ϕ p() x= 
 
 

=

Kϕ x y()
min l p()
ϕ p x,() y=

∞ if there is no p such that ϕ p x,(), y= 
 
 
 
 

=

61

 3. Kolmogorov Complexity as a Fundamental Metric Enabling Vulnerability Analysis

path, to access of infor mation. Figure 74 conceptu-

ally illustrates an instance of secure and insecure
operation in a system. Secure and insecure opera-
tion exist to varying degrees in the space of all possi-
ble forms of operation, M. Insecure operation, MI,
consists of those methods of operation that allow an
information warfare aggressor entrance into, or
access to control points, of the information system.
The intended secure operation areas MS are well
known and some of the insecure paths are also
known. Note that MS and MI can, and usually do,
overlap. However, the entire area of operation can
be extremely large and an exhaustive search for all
insecure operation is not feasible.

In Figure 74, Euclidean distance corresponds to
the degree of security. This leads one to consider a
metric space upon which to base information assur-
ance. The initial approach assumes only that the
metric has the characteristics of a metric in the
mathematical sense as shown in Definition 3, where
d is distance and p and q are points.

As illustrated in the left side of Figure 74, an
information system de-composed into many operat-
ing components could have a surface area as shown
on the right side of Figure 74. Note that this surface
is likely to change as a function of time, however, the
time indices are not written for now. The points, p
and q, are assumed to be relative to some absolute
value; p and q can be security values in either differ-
ent locations or at different time instances of the sys-
tem. If d is a measure of security, then Definition 3.A
implies that there is no difference in security

between the same point and itself. However, there
must be a difference between any two distinct points
in the security space. Definition 3.B states that the
measure between any two points in this space should
be the same regardless of the order in which one
takes the measurement. This means that, observed
from a common viewpoint, if security is measured at
two different points in this space, p and q, then the
measure of security will be the same regardless of
the order in which the points are entered in the
measure.

It does not imply anything about the strength of
an attack from p to q or an attack from q to p. It
means, for example, that if p is less than q, then an
attack from outside the system against p will be more
likely to succeed than an attack against q. Finally,
Definition 3.C states that the distance between any
two points will be less than or equal to the sum of
the distances between each of those points and a
common third point. Again, remember that this is a
measure of security taken from a view outside the
system of a potential attack from outside the system.

As discussed in more detail in the remainder of
this report, the actual measure will change as an
attacker penetrates the system and gains more
knowledge of the system. Kolmogorov Complexity
has been shown to possess the characteristics of a
metric space [99] and in Section III an implementa-
tion is developed that generates a topology similar to
Figure 74 for a given system.

If information assurance can be proven to reside
in a metric space, or alternatively, if a metric space
can be chosen in which information assurance can
reside, then principles of mathematical analysis
[100] can be used to rigorously determine more
detailed characteristics. For example, M can be
extremely large, possibly infinite. Are MS, or con-
versely, MI, open sets? If so, can limit points be
defined? What does an open set mean with regards
to information assurance and security?

As a simple example, consider a password protec-
tion system. Each character that a legitimate user of
the system adds to a password increases the number
of possibilities that a brute force (non-dictionary)
attack would require in order to guess the password.
Thus, the longer the passwords or encryption keys,
the more secure the system. While an infinite length
password is not possible, security does begin to
approach a limit point.

This can also be seen in any security safeguard
that works via the increase of complexity. That is,

Definition 3:
Properties of an
Information
Assurance
Metric

(A) d (p,q) > 0 if p ≠ q; d (p,p) = 0
(B) d (p,q) = d (p,q)
(C) d (p,q) ≤ d (p,r) + d (r,q) for any r
∈ X

Figure 74. Set Theory View of Secure Operation.

62

Areas ol (M i
unknown

operations

M I = Insecure Operations
M s = Secure Operations

3.4 Vulnerability Metrics with physical analogs

adding more non-redundant states to a T uring
Machine program, given the definition of perfor-
mance in Definition 7, to increase security. This
approach towards safeguard design approaches a
limit point but can never reach perfect security.
Security performance becomes less dense and less
brittle. However, in general, this appears to be the
only known approach, and thus limit points must
exist.

Topological Space for Information Assurance
By definition, an open set (E) is one in which every
point is an interior point. A point, p, is an interior
point of E if there is a neighborhood, N, of p such
that . A neighborhood Nr(p) of point p consists
of all points q such that N (p,q) < r where r is called
the radius of the neighborhood. If security, as deter-
mined by a given metric, is an open set, then there
are significant implications because of this. The best
that can be hoped for in such a case is to determine
limit points, because a distinct boundary between
security and insecurity would not exist. Will it be the
case that adding layers of security is much like add-
ing “open covers”, that is, the result can never be
perfect security, but rather an approach to a limit
point? The complement of an open set is closed;
what does that imply for assessment of insecurity?
Vulnerability analysis tools have been developed that
assume all vulnerabilities have been identified and
measured, and that the vulnerabilities can be manip-
ulated as discrete, closed sets.

In order to determine whether such measure-
ments can be applied to information assurance, con-
sider topology, metric spaces, and the fundamentals
of measurement theory in more detail. The defini-
tion below shows how the topology is induced by a
metric d. In Definition 4, τ is a collection of subsets
of X such that and , any finite intersec-
tion of members of τ is in, and any union of mem-
bers of τ is in τ. Definition 5 illustrates the topology
that will be induced. This is particularly important in
the development of the K-Map discussed in detail in
Section III. In the vulnerability framework presented
in this paper, the metric (d) is density (K/L) in Defi-
nition 6.

The intuitive notion is that d represents the ease
of movement of an intruder from one vulnerability
to another vulnerability, where d (x,y): . A
simple metric, as discussed previously, is to define d
as the number of state/transition sequences, within
a Turing Machine program representation of a sys-

tem, which an intruder can follow to move from vul-
nerability x to vulnerability y or equivalently the
cardinality of the set of V from Lemma 3. Does infor-
mation assurance reside within this metric space?
One test would be whether the metric supports the
design tradeoffs required in determining brittleness
in the design of the system.

To answer the above question, let V be the set of
currently exploited vulnerabilities. Most informa-
tion security approaches, including the one above,
assume that all vulnerabilities have been discovered
and measured. This can never be assumed to be the
case. Performance (α) from Definition 7 is an open
set, and as new security holes are discovered,

. If V represents vulnerability and is open,
then secure operation, , is closed. Assume
that for any x0. Note that x is now
an element of the set of secure operations. In other
words, the number of secure operations is bounded.
It is well known that a set is compact if and only if it
is closed and bounded.

Building upon Definition 4 and Definition 5
requires that Turing Machine program states (Q) be
identified as either secure or insecure. If an attacker
can reach a member of qInsecure then the attacker is
considered to have performed a successful attack. If
an attacker can never reach a member of qInsecure
then the system is considered invulnerable. The
challenge is that neither the attacker nor the
defender knows the entire structure of the Turing
Machine program, first because the attacker is
unlikely to have complete knowledge of the
defender’s system and also because even the
defender may not fully understand the system that
was developed. However, complexity estimation can
be applied without requiring a detailed understand-
ing of the target system. The following section pre-
sents results on the feasibility of the complexity-
based vulnerability analysis technique by applying it
to an active network.

N E⊂

∅ τ∈ X τ∈

X X× R→

Table 6

Definition 4:
Metric Space

Let d be a metric on X. A metric space
(X, d) is a topological space where the
topology Ù is the smallest one that
contains all sets of the form {y: d(x,
y)<Â} for all x and Â.

Definition 5:
Induced
Topology

V is the set of vulnerabilities and (V,d)
is the topology induced by the choice of
information assurance metric.

α 0=
lim V ∞→

V
sup

x V∈
d ẋ x0,() ∞<

63

 3. Kolmogorov Complexity as a Fundamental Metric Enabling Vulnerability Analysis

3.5 BRITTLE SYSTEMS, DETERMINISTIC
FINITE AUTOMATA, AND
VULNERABILITIES

In order to understand the requirements for a vul-
nerability analysis metric; consider the manner in
which systems that implement information assur-
ance can be designed using such quantification.
Design involves the tradeoff of one benefit for
another. Brittle Systems Theory provides a frame-
work for understanding the tradeoffs in perfor-
mance versus failure of information systems.

Brittle systems analysis [108] is based on the idea
that systems can fail in a manner analogous to brittle
fracture of materials. A system can maintain very
high performance until it fails quickly and cata-
strophically, as illustrated by performance curve Ph
in Figure 75, or systems may fail by exhibiting lower

performance in a gradual, more ductile manner as
in curve Pl. The mapping between Brittle Systems
Theory and information assurance is shown in Table
1. This analysis can be directly applied to the Turing
Machine program representation of a system.
Changes in any of the state machine parameters, Q,
T, I, δ, b, q0, qf, may modify the brittleness of the sys-
tem. For example, addition of a new state and transi-
tion could cause the system to behave in a more
ductile or brittle manner. What is the measure of
performance in a Turing Machine program model
of information assurance? What does catastrophic
failure mean in a Turing Machine program model of
information assurance?

In order to answer these questions, the perfor-
mance a from Definition 7 is resistance to attack and
X in Figure 75 is effort required by the attacker. The
answers to the above questions are intimately linked
to the choice of metric. Based on Definition 1, one
could choose the metric to be the number of
state/transition paths available to an attacker to
reach a particular target state, or equivalently, the
cardinality of the set of strings (V) given in

Lemma 1. Another possible metric could be the
proximity of the attacker’s current state to the state
that is the target of an attack. Note that later it is
shown that K/L is a vulnerability measure and is
related to |V|. Next, more detail on Brittle System
analysis and how it relates to the complexity-based
vulnerability metric is discussed using Finite Autom-
ata.

A Deterministic Finite Automaton (DFA) consists
of a 5-tuple (S, I, a, s0, F) where S is the set of states,
I is the input alphabet, a is a mapping from S into I,
s0 is the start state, and F is a subset of S called the
final, or accepting states. A DFA is less powerful than
a Turing Machine program. However, DFA have
been well studied and facilitate a framework in
which new theories related to information assurance
can be studied. An example of Brittle Systems using
Definition 1 for vulnerability is illustrated for the
DFA shown in Figure 76. A single vulnerability is rep-

Figure 75. Definition of brittleness: brittle versus ductile per-
formance.

Definition 7:
Information
Assurance
Performance.

Information assurance performance is
the inverse of the vulnerability induced
by the choice of metric, α = 1/ |V|. A
nearly invulnerable system has nearly
infinite performance and an extremely
vulnerable system has nearly zero
performance.

Figure 76. Example deterministic finite automaton of a sys-
tem undergoing brittle analysis with the complexity-based
vulnerability metric.

64

3.5 Brittle Systems, Deterministic Finite Automata, and Vulnerabilities

resented as a single modified transition, tfaulty. The
modified transition represents an error in either the
design or implementation that may allow an attacker
to penetrate the system. The effect of each transition
modified from its original source node to each possi-
ble destination node in the automaton is exhaus-
tively checked. The effort expended by an attacker is
assumed to be proportional to the length of the
strings used in the attack. In the application of brit-
tleness to vulnerability analysis, performance P is
defined by a (Definition 7); X is defined by Als,
which is the effort of an attacker measured in terms
of string size required to reach an unintended
accepting state. The algorithm requires starting with
the actual system as represented in Figure 77, modi-

fying a transition and then recording the number of
additional strings accepted. This is repeated for each
transition in the base system. As shown in Figure 78,
a modification of the transition from State 7,
Input 3, Destination State 2, (7,3,2) yields a small
number of vulnerabilities at string length two with a
maximum of 1000 vulnerabilities at string length 8.
This performance is ductile compared to the graph
shown in Figure 78, where transition (1,3,1) is modi-
fied. Figure 78shows more brittle behavior because it
takes a longer string length, thus more effort by the
attacker to find vulnerabilities; however, the vulnera-
bility increases rapidly as the string length increases.
A more precise definition of Brittleness is given in
Definition 8. Brittleness, defined by the area given in
the definition, is in units of Als/|V|.

Definition 9 provides a means for easily comput-
ing complexity in the world of finite automata. Next
the relationship between brittleness and complexity

is addressed. One might intuit that a faulty transition
in a less complex automaton will have less of an
impact than a faulty transition in a complex version
of the equivalent automaton. The definition of
equivalent automata is given in Definition 10.

Figure 79 and Figure 80 show a simple and com-
plex implementation, respectively, of the same infor-
mation system. Figure 79, as a simple
implementation, is what might be intuitively
referred to as an inefficient implementation,

Figure 77. Ductile resistance to attack for system in Figure 79
with fault (7, 3, 2).

Definition 8:
Brittleness.

The brittleness of a system is a relative
measure based upon the size of the
area defined by .from
Figure 79, where A and B are
normalized to have the same area and
T is a tolerance range. In the operation
below, T is defined as the width of the
line formed by the intersection of A and
B

Definition 9:
Complexity of
NDFA.

he complexity of a DFA or NDFA is the
number of transitions in the smallest
DFA that accepts the original language
of the DFA.

Definition 10:
Equivalence of
Automata A and
B.

Automatons A and B are equivalent if
and only if A and B accept the same
language.

Definition 11:
Correlation
between
Brittleness and
Complexity.

There is a correlation between
brittleness and density. A dense system,
being more highly optimized, will fail
at a faster rate than a simple version of
the same system. On the other hand, a
simple system will, on average, have
more opportunity for error, while those
errors are less catastrophic.

Figure 78. Brittle resistance to attack for system in Figure 79
with fault (1, 3, 1).

B A–() Td
T∫

65

Accepted Strings vs. Language Size

1000 r

800 -

tn-^ 600
.E ra ^u.
tn o 400
O <D
,_ 3
a>a

200 -

4 5 6 7

String Size (Aj^)

 3. Kolmogorov Complexity as a Fundamental Metric Enabling Vulnerability Analysis

because it contains many more states than necessar y.
This yields the opportunity for more vulnerabilities
and faults. However, it also requires more effort by

the attacker, that is, a larger Als, to reach a given tar-
get.

Figure 79. A disperse (low density) DFA. Figure 80. Implementation of the DFA in wFigure 84that ap-
proaches true complexity.

Table 7 Brittle vulnerability analysis definitions .

Materials Science Brittle Systems Information Assurance

Stress Amount parameter exceeds its toler-
ance

Applied force under the weight of an attack, AlsT

Toughness System Robustness Encryption strength and sensitivity of intrusion detectors

Ductility Level of Performance outside Toler-
ance

Ability of system to gracefully degrade given an attack,
Als /|V|: Als > AlsT

Plastic Strain Degradation from which the system
cannot recover

Trojan horse

Brittle Fracture Sudden steep decline in perfor-
mance

Sudden catastrophic collapse of all information assur-
ance

Young’s Modulus Amount tolerance exceeded over
degradation

Deformation Degradation in performance The amount by which vulnerability has been increased
due to an attack, ˜ (1/|V|)

Brittleness Ratio of hardness to ductility; esti-
mated as difference in performance
curves when outside tolerance

(Alsh
/|V|)-(Alsd

/|V|): (Alsh < AlsT
 and Alsd > AlsT

)

Ductile Fracture Graceful degradation in perfor-
mance

Ability of information to gracefully degrade under an
attack

Reversible Strain Degradation from which the system
can recover

Trojan horse detection and removal

66

3.5 Brittle Systems, Deterministic Finite Automata, and Vulnerabilities

Figure 80 is a closer representation of the tr ue
complexity of the same system. It has fewer opportu-
nities for failure; however, the failures that occur will
have a more significant impact. In Figure 81 and

Figure 82, brittleness and complexity are compared.

 Brittleness is computed as defined in Definition
8. Performance is defined based upon the number
of accepted strings and string size. The ratio of the
number of accepted strings to total string size is
inversely proportional to the performance. For each
possible fault, this ratio is compared to a consistent
base case consisting of an exponentially growing
number of accepted words as the string size

increases. A brittle system accepts few words initially,
and then suddenly accepts a large number, while a
ductile system accepts a moderate, but gradually
increasing number with no sudden increase. The
brittle measure is graphed as a function of a fault in
the state specified on the dependent axis. A fault is
generated by the re-connection of a single specified
transition to a destination other than that which was
originally specified. A single fault leads to many n-1
possible faulty states where n is the number of origi-
nal states. Complexity is estimated as the number of
transitions in the smallest representation of the
resulting faulty system’s DFA. Comparing Figure 81
and Figure 82, there appears to be an opposite rela-
tionship between brittleness and complexity. That is,
a system with greater complexity results in lower brit-
tleness. Greater complexity indicates a larger num-
ber of transitions and states exist, thus there is more
opportunity for an attack, but more effort is
required by the attacker to successfully complete the
attack. In Figure 83 and Figure 84 a similar analysis

is performed on the more compact, or truer repre-
sentation of the complexity, of the same system. A
system with an implementation whose size is closer
to its true complexity is more brittle. The inverse
relationship between complexity and brittleness
holds in the more compact system (Figure 80) as
well.

Hardness Level of Performance within toler-
ance limits

Resistance to decryption, Als /|V|: Als < AlsT

Table 7 Brittle vulnerability analysis definitions (Continued).

Materials Science Brittle Systems Information Assurance

Figure 81. Brittle measure of DFA shown in Figure 78 in dimen-
sions of Als/|V| versus tfaulty.

Figure 82. Complexity of DFA shown in Figure 78 in dimen-
sions of K(DFA) versus tfaulty.

Figure 83. Complexity measure of system shown in Figure 79
in dimensions of K(DFA) versus tfaulty.

67

Brittleness vs. Fault Location

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Faulty Transition (t,a„|^)

Complexity vs. Fault Location

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Faulty Transition (t,a„^)

 3. Kolmogorov Complexity as a Fundamental Metric Enabling Vulnerability Analysis

An impor tant result in this exploration of the
relationship among vulnerability, complexity, and

brittleness is that the greater the dispersion, the
lower the brittleness. This suggests that larger sys-
tems, requiring traversal of larger numbers of states
and transitions to reach an accepting state, or target
of attack, require more effort to successful attack. A
system that has a large amount of inherent complex-
ity cannot be designed more compactly than the
length of its Kolmogorov Complexity. An intelligent
attacker may be able to observe an inefficiently
implemented system and reduce it to its most com-
pact form, that is, its Kolmogorov Complexity, thus
easily identifying paths of attack to reach specific tar-
gets. A truly safe system is thus obtained, not by
building inefficiency into the system, but rather, by
making the view to the attacker as inherently com-
plex as possible.

Figure 84. Brittle measure of system shown in Figure 79 in di-
mensions of Als/|V| versus tfaulty.

68

Results of Work

69

goodelle

4. Active Networks
Active Virtual Network Management Prediction enhance-
ment via Kolmogorov complexity estimation

Kolmogorov Complexity (K(x)) (see [10] for an
introduction to Kolmogorov Complexity and [5],
[6], [8], and [9] for applications) is the optimal
compression bound of string x. This incomputable,
yet fundamental property of information has vast
implications in a wide range of applications includ-
ing network and system optimization, security, and
Bioinformatics. Active networks [3] form an ideal
environment in which to study the effects of
tradeoffs in algorithmic and static information rep-
resentation because an active packet consists of both
code and static data. A question active network
application developers must answer is, “What is the
optimal proportion of packet content that should
be code versus data?” A method for obtaining the
answer to this question comes from direct applica-
tion of Minimum Description Length (MDL) ([10]
and [14]) to an active packet. Let Dx be a binary
string representing x. Let Hx be a hypothesis, in algo-
rithmic form, that attempts to explain how x is
formed. MDL states that the sum of the length of the
shortest encoding of a hypothesis about the model
generating the string and the length of the shortest
encoding of the string encoded by the hypothesis
will estimate the Kolmogorov Complexity of string x,
K(x) ≈ K(Hx) + K(Dx|Hx). A method for determining
K(x) separates randomness from non-randomness in
x by incorporating non-randomness, which is com-
putable, as the shortest encoded program that repre-
sents the original string. The random part of the
string represents the error, that is, the difference
between the original string and the output of the
encoded program. Thus, the goal is to minimize
l(He) + l(Dx|He) + l(E) where l(x) is the length of
string x, He is the estimated hypothesis used to
encode the string (Dx) and E is the error in the
hypothesis, Dx – (Dx | He). The more accurately the
hypothesis describes string x, the shorter the encod-
ing of the string. An active packet is measured as
shown in Figure 85, where choosing an optimal pro-
portion of code and data minimizes the packet
length. The goal is to learn how to optimize the
combination of communication and computation

enabled by an active network. Clearly, if is estimated
to be high for the transfer of a piece of information,
then the benefit of having code within an active
packet is minimal. On the other hand, if the com-
plexity estimate is low, then there is great potential
benefit in including it in algorithmic form within
the active packet. When this algorithmic informa-
tion changes often and impacts low-level network
devices, then active networking provides the best
framework for implementing solutions (a specific
example of separating non-randomness from ran-
domness, although not explicitly stated as such, can
be found in mobility management as discussed in
[3] and [11]).

An active packet that has been reduced to the
length of the best estimate of the Kolmogorov Com-
plexity of the information it transmits will be called
the minimum size active packet. When the mini-
mum size active packet is executed to regenerate
string x, the Dx | He portion of the packet predicts x
using static data () to correct for inaccuracy in the
estimated hypothesis. There are interesting relation-
ships between Kolmogorov Complexity, prediction,
compression and the Active Virtual Network Man-
agement Prediction (AVNMP) mechanism
described in [3]. These relationships are discussed
and experimentally validated throughout this paper.
The next section provides an overview of AVNMP
before discussing its relationship to Kolmogorov

Figure 85. Algorithmic content.

70

Complexity2. After required relevant background on
AVNMP is explained, the relationship to Complexity
Theory is developed beginning from a high level
overview, then driving down into detailed relation-
ships and experimental results.

4.1 ACTIVE VIRTUAL NETWORK
MANAGEMENT PREDICTION OVERVIEW

The Active Virtual Network Management Prediction
(AVNMP) architecture provides a network predic-
tion service that utilizes the capability of Active Net-
works to easily inject fine-grained models into the
communication network to enhance network per-
formance. AVNMP, injected into the network as an
active application, is capable of modeling load and
propagating state information in a manner that
meets the demand for accuracy at a particular active
node. Greater demand for prediction accuracy is
met at the cost of AVNMP performance, that is, the
ability of AVNMP to predict farther into the future.
While this paper focuses on network traffic and load
prediction, an AVNMP application to predict CPU
utilization for Active Networks in collaboration with
National Institute of Standards and Technology
([4], [12] and [13]) has been demonstrated. The
inherently distributed nature of communication net-
works and the computational power unleashed by
the Active Networking paradigm have been used to
mutual benefit in the development of the Active Vir-
tual Network Management Prediction mechanism.
Active Networks benefit from AVNMP by continu-
ously receiving information about potential prob-
lems before they occur.

AVNMP benefits from Active Networks in many
ways. The first, and most practical way, is the ease of
development and deployment of this novel predic-
tion mechanism. This could not have been accom-
plished so quickly or easily given today’s closed,
proprietary network device processing. Another
benefit is the fact that network packets now have the
unprecedented ability to control their own process-
ing. Great advantage was taken of this new capability
in AVNMP. Virtual messages, varying widely in con-
tent and processing, can adjust their predicted val-
ues as they travel through the network. Finally,
Active Networks add a level of robustness that can-
not be found in today’s networks. This robustness is
due to the ability of AVNMP system components,
which are active packets, to easily migrate from one

node to another in the event of failure -- or the pre-
diction of failure provided by AVNMP itself.

The desired characteristics of AVNMP are large a
Lookahead time, high prediction accuracy, low over-
head and robust operation. Each of these character-
istics is inter-related and a suitable tradeoff needs to
be determined during configuration of the system.
The AVNMP experimental validation configuration
for the initial test discussed in this paper is a feed
forward network consisting of a host containing the
Driving Process and four intermediate active net-
work nodes containing Logical Processes as shown
in Figure 86. AH-1 and AH-2 are host nodes and AN-

1 through AN-5 are active network nodes. The edges
between the nodes represent links between the
labeled ports on each node. All nodes are Sun
Sparcs running the Magician active network execu-
tion environment. The AVNMP system parameters
were configured as shown in Table 8. In this experi-
ment AVNMP is predicting the packet input and out-
put rate for each link at each node, from an
application residing on AH-1 that is transmitting an
active audio packets.

2. Current project progress and experimental code is maintained in http://www.research.ge.com/~bushsf/ftn.

Table 8 AVNMP Parameters

Sliding Window Loo-
kahead Length

200 seconds

Virtual Message Gen-
eration Rate

0.5 virtual messages/millisec-
ond

Virtual Message Step
Size

20 seconds

Tolerance 500 Messages/second
(reduced by half periodically)

Ratio of Virtual to Real
Messages

1 virtual message/real message

Figure 86. Experimental configuration.

71

 4. Active Networks

The State Queue plot, Figure 87, shows the pre-
dicted traffic load values cached in the State Queue
as a function of LVT and Wallclock. As Wallclock
approaches any given Local Virtual Time, the pre-
dicted load values converge towards the actual load.
The general operation is illustrated in the next five
graphs where all measurements, unless otherwise
indicated, are from node AN-4. These curves vali-
date intuitive trends in the operation of AVNMP.
Figure 88 shows the reduction in tolerance versus
time that is pre-programmed into each Logical Pro-
cess. The Y-axis is the tolerance that is demanded
between the predicted value and the actual value of
an SNMP packet counter. This value is decreased
purposely in this experiment in order to create a
greater demand over time for accuracy and thus cre-
ate a challenging validation of the AVNMP system
under gradually increasing stress. In Figure 89 the
proportion of out-of-tolerance messages is shown as
a function of Wallclock. The Y-axis is the proportion
of messages that arrived at a specific node out of tol-
erance, that is, the actual value exceeded the pre-
dicted value by an amount greater than the
tolerance setting. As Wallclock progresses, the toler-
ance is purposely reduced causing a greater likeli-
hood of messages exceeding the tolerance. This is
done in order to validate the performance of the sys-
tem as stress, in the form of greater demand for
accuracy, is increased. Figure 90 shows the predic-
tion error as a function of Wallclock. The Y-axis is
the difference in the number of packets received
versus the number of packets predicted to have been
received. This graph verifies that the system is pro-
ducing more accurate predictions as the demand for
accuracy increases. However, the Y-axis of Figure 91
shows the Lookahead decreasing versus Wallclock.
The expected Lookahead time is the difference
between Wallclock and the Local Virtual Time at a
particular node. The demand for greater accuracy
reduces the distance into the future that the system
can predict. Finally, in Figure 92, speedup, the ratio
of virtual time to Wallclock of the real system, is
shown as a function of Wallclock. The speedup is
reduced as the demand for accuracy is increased. As
previously mentioned, only for purposes of this
experiment, the tolerance is being reduced as
Wallclock progresses, causing the accuracy to
increase while loosing performance in terms of
speedup and Lookahead.

AVNMP overhead
AVNMP has the potential to generate two forms of
overhead, processing overhead and bandwidth over-
head. If the predicted results are within the user
specified error tolerance and the user fully utilizes
the predicted results, then overhead is at a mini-
mum. The question of overhead versus benefit
becomes one that depends upon the perceived util-
ity of predictive capability and depends significantly

Figure 87. State queue.

Figure 88. Tolerance setting decreases as wallclock in-
creases thus demanding greater accuracy.

Figure 89. Demand for greater accuracy causes the propor-
tion of out-of-tolerance messages to increase.

72

4.1 Active virtual network management prediction overview

upon the manner and application in which it is
used. It is the author’s belief that load and process-
ing prediction are of particularly great importance
in Active Networks where routing is based upon not
only load, but the processing capability required by
active applications. In this section, the load predic-
tion application example is continued with overhead
results displayed in terms of processing time and
number of packets transmitted. The expected ANEP
[3] packet size measured during the test was 1000
bytes.

Task execution time and message overhead
The task execution time is the Wallclock time the
system spends executing a non-rollback message. It
was expected that task execution time would be
essentially constant; however, it increases in direct
proportion to the number of rollbacks as shown in
Figure 94. This is caused by the lack of fossil collec-
tion. The increase in the number of values in the
State Queue is causing access of the State Queue and
MIB to slow in proportion to the queue size.
Figure 93 displays the number of virtual messages
versus Wallclock and Figure 95 displays the total
number of anti-messages. This is expected to
increase over time. This value is reset every time the
tolerance is tightened (every 5 minutes in this case).

AVNMP robustness
AVNMP consists of two main types of active packets:
AvnmpLP, which is the Logical Process, and Avnmp-
Packet, which is the virtual message. If an AvnmpLP
packet is dropped, the destination node will not
have the capability to work forward in time or for-
ward virtual messages. Thus, AVNMP features will
not be available on the node and accuracy of other
nodes may be reduced. If an AvnmpPacket is dropped
or unexpectedly delayed, accuracy will be reduced

Figure 90. Predictions become more accurate….

Figure 91. …at the expense of lookahead….

Figure 92. …and speedup.

Figure 93. Number of virtual messages versus wallclock.

Figure 94. Expected task execution time as a function of
wallclock.

73

 4. Active Networks

because the State Queues of downstream nodes will
lack a predicted value. However, AVNMP will con-
tinue to operate. In the next section the role of com-
plexity in understanding prediction is discussed.

4.2 TOWARDS COMPLEXITY
AVNMP can provide early warning of potential prob-
lems; however, the identification of a solution and
marshaling of automated solution entities within an
active network has not yet been fully addressed. This
project has begun to lay the groundwork for such
automated composition of management solutions
within an active network [3]. This direction is being
carried forward by exploration of a relatively unex-
plored area –understanding the benefits of active
networking, Algorithmic Information Theory, and
its close companion, Complexity Theory. To our
knowledge, this work is the first to propose and
begin investigation into the newly available process-
ing power of Active Networks through the concept
of Complexity and Algorithmic Information (“Strep-
tichrons”) as shown in Figure 96. Legacy networks,
which are today’s passive networks, have been
designed to optimize transmission of passive data
using bit compression based upon the underlying
notion of Shannon Entropy. AVNMP has shown that
active networks allow for the possibility of executable
models and that the corresponding information
packets might be best studied with Kolmogorov
Complexity as the underlying theory. It is serendipi-
tous that Complexity Theory has been receiving
more attention lately and is making significant theo-
retical progress at the same time that research into
active networking is taking place. Active networks
provide a new paradigm and enhanced capabilities,
which, when combined with ideas from Algorithmic
Information Theory [10], might lead to superior,
innovative solutions to problems of network man-
agement. One possible approach proposes to com-

bine Kolmogorov Complexity with the science of
Algorithmic Information Theory (sometimes called
Complexity Theory) to build self-managed networks
that draw on fundamental properties of information
to identify, analyze, and correct faults, as well as
security vulnerabilities, in a distributed information
system [8],[9]. Specifically, we suspect that complex-
ity measures can be used to detect and analyze prob-
lems in a network, and to facilitate techniques to
remedy network faults. We also envision that Kol-
mogorov Complexity can be applied directly to
improve the performance of AVNMP. In [5] and [6]
the concept of monitoring the change in Kolmog-
orov Complexity of a system was first introduced for
Information Assurance.

According to Complexity Theory, the complexity
of an information unit is the size of the smallest pro-
gram capable of producing the unit. Similarly, Algo-
rithmic Information Theory defines the complexity
of an information unit to be the unit’s length (after
the unit has been compressed to the maximum
extent possible). These two views can be related
through theory. In general, complexity is not com-
putable; however, the bounds on complexity tighten
continuously as fundamental research in Kolmog-
orov Complexity progresses. For example, the Mini-
mum Data Length (MDL) [14] estimate for
Kolmogorov Complexity considers that the best
measure for complexity of an information unit mini-
mizes the sum of the length of the description of a
theory that produces the unit and the length of the
unit encoded using the theory. In this section, we
use MDL as one approach to estimate Kolmogorov
Complexity, and we suggest its application as a
means to improve the performance of AVNMP.

Figure 95. Number of anti-messages versus wallclock.

Figure 96. Active networks and legacy networks as viewed
by AVNMP.

74

One potential drawback to AVNMP, gently
pointed out earlier in this paper, is fact that AVNMP
itself consumes resources in an effort to predict
resource usage in a network. Resource consumption
by AVNMP is tied directly to accuracy: higher accu-
racy costs more in terms of bandwidth utilization,
associated with simulation rollbacks and the con-
comitant transmission of anti-messages. Despite this
relationship, potential exists to nearly reach the the-
oretical minimum amount of bandwidth to achieve
the maximal model accuracy. This possibility arises
because AVNMP consists of many small, distributed
models (each a description of a theory) that work
together in an optimistic, distributed manner via
message passing (data). Each AVNMP model can be
transferred, using Active Networks, as a Streptichron
[3], which is any message that contains an execut-
able model in addition to data. Using Streptichrons,
the optimal mix of data and model can be transmit-
ted to closely approximate the minimum MDL.
Achieving maximal model accuracy at minimal
bandwidth provides the best AVNMP accuracy at the
least cost in AVNMP resource consumption.

Other possibilities exist to exploit Kolmogorov
Complexity to improve AVNMP performance. For
example, one can apply the MDL technique to the
rollback frequency of all the AVNMP enhanced
nodes in a network. A low rollback complexity
(which suggests a high compressibility in the
observed data) would indicate patterns in the roll-
back behavior that could be corrected relatively eas-
ily by tuning AVNMP parameters. High complexity
(low compressibility) would indicate the lack of any
computable patterns, and would suggest that little
performance improvement could be achieved by
simply tuning parameters. Thus, we hypothesize that
our tuning gradient should be guided toward
regions of high complexity, which suggests that we
can tune parameters to improve the rollback fre-
quency. The next section focuses upon experimental
results relating prediction to complexity gathered
from the operation of the AVNMP system.

4.3 AVNMP AND KOLMOGOROV
COMPLEXITY

In AVNMP, information that impacts the network is
transmitted based upon prediction at a low level
within the network. Thus, AVNMP allows experi-
mentation in defining the boundaries within which
active networking is beneficial. In Figure 97 an
active and passive form of AVNMP is represented.

The passive case is represented in the upper portion
of the figure. In the passive case, actual data (Dx) is
observed at the Driving Process. A hypothesis is
formed about the data, and predicted data (Dy) is
generated in the form of static virtual messages. The
term static indicates that information content within
the message contains no executable code. When
error in the hypothesis exceeds a preset threshold,
AVNMP causes rollbacks to occur in order to adjust
for the inaccuracy. In the lower portion of Figure 97,

the hypothesis is included within each packet and is
used to encode within the code portion of the active
packet.

What is the relationship between the estimated
operating hypothesis (He) in the AVNMP packet
encoding and as the predictor in the Driving Pro-
cess? First, they are the same hypothesis. Second, it
has been shown [10] that the shorter the packet, the
better the predictor. Conversely, the worse the pre-
diction, the longer the value is within the AVNMP
packet encoding. Can Active Virtual Network Man-
agement Prediction benefit from the fact that the
smallest algorithmic form is also the most likely pre-
dictor of a sequence? This can come about because
Driving Processes and Streptichrons (active virtual
messages anticipating events in the future) benefit
by being both small and accurate as shown in
Figure 98. The objective is to increase the rate of
convergence of the predictions held within the State
Queue to converge to the actual value that will occur
in the future, and to converge to the value before it
actually exists. Actual and predicted values within a
particular instance of a State Queue were shown in

Figure 97. Active versus passive form of AVNMP.

75

 4. Active Networks

Figure 87. Let us examine A VNMP results in light of
complexity in more detail in the next section.

Load prediction and complexity in active
virtual network management prediction
Our Active Network Kolmogorov Complexity estima-
tor is currently implemented as a quick and simple
compression estimation method. It returns an esti-
mate of the smallest compressed size of a string. It is
based upon computing the entropy of the weight of
ones in a string. Specifically it is defined in
Equation 12

(12)

where x#1 is the number of 1 bits and x#0 is the
number of 0 bits in the string whose complexity is to
be determined. Entropy is defined in Equation 13.

(13)

 See [7] for other measures of empirical
entropy and their relationship to Kolmogorov
complexity. The expected complexity is asymp-
totically related to entropy as shown in
Equation 14.

(14)

Load prediction data sampled from execution of
AVNMP is analyzed relative to several hypotheses.
The goal is to use a simple example to demonstrate
the relationship among accuracy of hypotheses,
complexity, and compression. The initial hypothesis
(regardless of naiveté in choice of hypothesis) is that
the data can be characterized by a simple linear

extrapolation based upon the last sampled load val-
ues. This is shown in Figure 99 where the gray boxes
are actual load samples and the black stars are pre-
dicted load samples. Note that the predicted load is
based upon a short history shown in the graph as the
initial match between predicted and actual load.

Various enhancements are added to the initial
hypothesis. In this specific case, a running average
was used to smooth the data before the extrapola-
tion. The size of the running average defines a
hypothesis. Each enhancement is considered a new
hypothesis (He) in this experiment. In Figure 100,
for each the sum of the error in predictions is
graphed as the gray boxes in the lower portion of
the graph. The compressed size of the correspond-
ing error is plotted as the black stars in the upper
portion of the figure. Clearly a better hypothesis
concerning the origination of the data results in bet-
ter prediction and greater compression, while poor
hypotheses result in inaccurate prediction and
reduced compression. This provides a concrete
demonstration of the relation between complexity
and prediction accuracy.

It is hypothesized that the greater the complexity,
the greater the error in prediction, and thus the
greater the likelihood of AVNMP rollback. In order
to validate this hypothesis, load prediction error
from AN-1 (see the experimental configuration
shown in Figure 86) within the network is compared
with the estimated complexity of the actual load. In
Figure 101 the load prediction error is plotted with
the estimated complexity versus Wallclock where val-

Figure 98. Better Prediction Implies Smaller Packets Implies
Better AVNMP Performance Implies Better Prediction.

K̂ x() l x()H≈() x#1
x#1 x#0+
------------------------- 
 

2
l x()()log+

H p() p
2

p 1.0 p–()
2

p 1.0 p–()–log–log–=

H X() P X x=()C X()
l x() n=
∑≈

Figure 99. Load Prediction Hypothesis.

Figure 100. Simple AVNMP Hypotheses for Load Prediction.

76

4.3 AVNMP and Kolmogorov complexity

ues are taken over intervals of the same length as the
Sliding Lookahead Window shown in Table 8.
Larger error, and thus more likely rollback, occurs
during periods of relative high complexity, while
complexity is low during periods of low error.

Prediction convergence and complexity
Predictions within the State Queue form a sequence
that AVNMP is trying to predict. This is represented
in more detail in Figure 102. The goal of the roll-
back mechanism is to cause the predicted values to
converge to the best-predicted estimate. In AVNMP,
the Driving Process is the model, or MDL hypothe-
sis. The virtual messages generated by the Driving
Processes may be active, containing small hypotheses
within themselves as previously discussed in the bot-
tom of Figure 97.

The definition of Global Virtual Time, GVT(t),
can be applied to reason about the information con-
tained in the State Queue. Consider task execution
time (τtask), which is the time taken by a logical pro-
cess to generate a predicted value given an input
message, the Wallclock time at which a particular
state was cached (τSQ), and Wallclock time (t). Let
PSQ be the predicted time that event SQ will occur.
Let f(τ) be the prediction hypothesis of a Driving

Process such that f(τ) predicts a value for time τ
where τ ≥ t. Consider a predicted value (Vv) that is
cached at time in the State Queue resulting from a
particular predicted event. As rollbacks occur, values
for a particular predicted event may change, con-
verging to the real value (Vr). For correct operation
of Active Virtual Network Management Prediction,
should approach as t approaches GVT(t). Explicitly,
this is ∀ε > 0∃δ : 0 <| f(t) – f(GVT(t)) | < ε implies that
0 <|(GVT(t)) – t|<δ where f(t) = Vr and f(GVT(t)) =
Vv. Because Active Virtual Network Management
Prediction always uses the correct value when the
predicted time (p) equals the Wallclock (t) and it is
assumed that the predictions become more accurate
as the predicted time of the event approaches the
current time, the reasonable assumption is made
that limt→p f(t) = Vr. In order for the Active Virtual
Network Management Prediction system to always
look ahead, ∀t: GVT(t) ≥ t. This means that

 and where m
is the receive time of a message, M is the set of mes-
sages in the entire system and is the LVT of
the nth Logical Process. In other words, the Local
Virtual Time of each process must be greater than or
equal to Wallclock and the smallest message not yet
processed must also be greater than or equal to
Wallclock. The smallest message could cause a roll-
back to Wallclock. This implies that

. In other words, this implies that
the Local Virtual Time of each driving process must
be greater than or equal to Wallclock. An out-of-
order rollback occurs when m < LVT(t). The largest
saved state time such that PSQ < m is used to restore
the state of the Logical Process, where PSQ is the
time the state was predicted to occur. Then the
expected task execution time (τtask) can take no
longer than Ptask – t to complete in order for GVT(t)
to remain ahead of Wallclock. Thus, a constraint
between expected task execution time (τtask), the
predicted time associated with a state value (PSQ),
and Wallclock (t) has been defined. As He improves
there will be a reduction in the number of rollbacks,
a smaller value in the packet encoding, and shorter
Streptichrons.

Self-regulation via complexity
As predictions become more inaccurate in AVNMP,
virtual messages should slow down, rather than bur-
den the system with potential rollbacks. Poorly pre-
dicted messages will naturally be larger in their

Figure 101. Estimated Complexity and Error within AVNMP.

Figure 102. Converging Predictions.

n LP{ }t LVTlpn
t() t≥∈∈∀ min

m
--------- M{ } t≥∈

LVTlpn

n t, :LVTdpn
t() t≥∀

77

 4. Active Networks

minimum size, which slows down their rate of propa-
gation in proportion to their inaccuracy.

Another issue concerns a mechanism for feed-
back to the Driving Process in order to improve.
Such a feedback mechanism can be based upon

input from the complexity estimate, or minimum
encoded packet size, of virtual messages. The
hypothesis is adjusted in a manner that drives the
system towards minimizing encoded virtual message
size.

78

5. Fault Identification and Extraction
Active Virtual Network Management Prediction
(AVNMP) [16], provides predicted state within each
node of a network based upon a correct estimated
operating hypothesis, He. The AVNMP architecture
provides a network prediction service that utilizes
the capability of Active Networks to easily inject fine-
grained models into a communication network to
enhance network performance. AVNMP, injected
into the network as an active overlay network, is a
simulation of the actual network, but running tem-
porally ahead of the actual network. AVNMP is capa-
ble of modeling load and propagating state
information in a manner that meets the demand for
prediction accuracy at a particular active node at the
expense of overhead due to rollback in order to cor-
rect for prediction inaccuracy. Thus, prediction
accuracy is met at the cost of AVNMP performance,
that is, the ability of AVNMP to predict farther into
the future. An AVNMP application to predict CPU
utilization for Active Networks has been demon-
strated in collaboration with National Institute of
Standards and Technology in [17], [35] and [36].
The inherently distributed nature of communica-
tion networks and the computational power
unleashed by the Active Networking paradigm have
been used to mutual benefit in the development of
the Active Virtual Network Management Prediction
mechanism. Active Networks benefit from AVNMP
by continuously receiving information about poten-
tial problems before they occur. In this paper, the
groundwork is laid for using a Kolmogorov Com-
plexity estimate to drive the optimal generation and
composition of solutions. System faults are repre-
sented in algorithmic form. Reversible code is then
developed to remove the effect of faults in a system.
The application in this paper focuses on an active
network in which information, algorithmic and
static, can be transmitted in a fine-grained manner.

Kolmogorov Complexity (K(x)) (see [30] for an
introduction to Kolmogorov Complexity and [18],
[21] [28] and [29] for applications) is the optimal
compression bound of string x. This incomputable,
yet fundamental property of information has vast
implications in a wide range of applications includ-
ing network and system optimization, security, and
Bioinformatics. An active network [16] provides a
suitable environment in which to study the effects of
tradeoffs in algorithmic and static information rep-

resentation because an active packet consists of both
code and static data. An active network enables pack-
ets to perform computation at the intermediate
nodes in addition to its communication capabilities.
This enables application developers to design novel
network services and protocols that can trade-off
communication and computation as the packet
traverses the network. Therefore, to ensure best per-
formance, active network developers have to effec-
tively answer the question, “What is the optimal
proportion of the code size in a packet with respect
to its data payload?” A method for obtaining the
answer to this question comes from direct applica-
tion of a technique called Minimum Description
Length Minimum Description Length (MDL)
[37],[30] to an active packet. Let be a string of bits
representing x. Let be a hypothesis, or algorithm,
that attempts to explain how is formed. MDL states
that the sum of the length of the shortest encoding
of a hypothesis about the model generating the
string and the length of the shortest encoding of the
string encoded by the hypothesis will estimate the
Kolmogorov Complexity of string x. A method for
determining separates randomness from non-ran-
domness in x by incorporating non-randomness,
which is computable, as the shortest encoded pro-
gram that represents the original string. The ran-
dom part of the string represents the error, that is,
the difference between the original string and the
output of the encoded program. Thus, the goal is to
minimize where is the length of string x, is the esti-
mated hypothesis used to encode the string () and is
the error in the hypothesis. The more accurately the
hypothesis describes string x, the shorter the encod-
ing of the string. An active packet is measured as
shown in Figure 103, where each packet conveys the
same information; however, the length varies with
the choice of the proportion of code and data. This
in turn is governed by the hypothesis chosen to rep-
resent the data. The better the hypothesis, the lesser
the “error” made in representing the data. In the fig-
ure, H1 is the worst hypothesis as the “error” and
hence the packet size is the largest. On the other
hand, H4 presents the best hypothesis for the data
and hence the packet size is the smallest. The goal is
to learn how to optimize the combination of com-
munication and computation enabled by an active
network. Clearly, if is estimated to be high for the

79

transfer of a piece of infor mation, then the benefit
of having code within an active packet is minimal.
On the other hand, if the complexity estimate is low,
then there is great potential benefit in including it
in algorithmic form within the active packet. When
this algorithmic information changes often and
impacts low-level network devices, then active net-
working provides the best framework for implement-
ing solutions. In the next section, the relationship
among AVNMP, Kolmogorov Complexity, and fault
behavior are examined in more detail.

5.1 AVNMP AND FAULT PREDICTION
The Active Virtual Network Management Prediction
mechanism (AVNMP) [16] requires the injection of
models, or hypotheses, that describe the operation
of the system assuming no fault exists. An example
derivation of a non-fault-operating hypothesis and
its relationship to Kolmogorov Complexity is dis-
cussed in [155]. When Wallclock time reaches a pre-
dicted state time, verification is made to determine
whether the predicted value deviates beyond a pre-
set tolerance from the actual value. If the prediction
is accuracy fails to fall within the tolerance, an out-
of-tolerance rollback occurs. Out-of-tolerance roll-
backs in AVNMP are due to inaccurate prediction
and thus are related to error, or inability of the
hypothesis in MDL to fully capture all patterns in a
string. The rollback mechanism, which is also corre-
lated to the length of E, Figure 103, in the encoded
packet as discussed in [155], accounts for random-
ness. That is, randomness is defined as information
incapable of being compressed algorithmically and
cannot be defined algorithmically, and thus cannot
be predicted. This results in a higher Kolmogorov
Complexity as experimentally validated in [155].

However, a fault occurring in the system will appear
as a deviation from the non-fault-operating hypothe-
sis. The fault will induce the appearance of greater
randomness, or higher Kolmogorov Complexity
because actual events will not fit the initial estimated
hypothesis (He). This will cause an increase in roll-
back frequency and a longer value in the encoded
packets. Most Bayesian Belief Networks take the
opposite approach by developing fault hypotheses
(Hf) rather than a correct operating hypothesis.
Clearly an approach based upon handcrafting fault
hypotheses assumes one can predetermine and char-
acterize all possible faults, a large and difficult task.
The goal of this project is self-healing, in which the
system automatically aligns itself with the correct
operating hypothesis in the presence of unantici-
pated faults.

A potential complication that arises when AVNMP
is viewed in this manner is that is, by definition, only
an estimate of the correct operation of the actual sys-
tem. Rollbacks, randomness and occur as a result of
the deviation ofHe from H, where is the true and
complete hypothesis describing the system. The
question arises as to how to distinguish between ran-
domness due to a faulty operating hypothesis and an
actual fault. Figure 104 illustrates the dichotomy. In

the upper portion of the figure, the virtual system
runs ahead of Wallclock time such that Global Vir-
tual Time (GVT), that is the estimate of time to
which the entire AVNMP system has advanced, pro-
ceeds at a faster rate than Wallclock. The physical
system, in the lower portion of the figure proceeds
at the rate of Wallclock. In order to correct the vir-
tual system, anti-messages, in the form of reversible
code [20], can be transmitted. This reduces the for-

Figure 103. Algorithmic content.

Figure 104. Self-correcting simulation versus fault correction
within the actual system.

80

 5. Fault Identification and Extraction

ward execution rate of the vir tual system in an
attempt to bring the virtual system, based upon an
estimated hypothesis (He), closer to the actual sys-
tem operation described by hypothesis H. Alterna-
tively, in the real system, anti-faults in the form of
reversible code can be generated to move the actual
system () towards the estimated hypothesis (He).
The next section considers anti-faults in more detail.

5.2 ALGORITHMIC FAULT DETECTION AND
GENERATION

There are at least three reasons why an algorithmic
description of a fault is desirable. First, constructing
the smallest algorithmic representation of a fault
indicates its complexity, which is valuable informa-
tion. Complexity is important information because it
is an indicator of both the type of fault and level of
difficulty in correcting the fault and the severity of
the fault; fault severity is important in triage opera-
tions to optimize system health. Second, a more
compact algorithmic representation of a fault will
travel faster and more rapidly through the network;
it is an efficient format for alerting system manage-
ment and in triggering automated solutions. Third,
it is relatively easy to reverse the code of an algo-
rithm, possibly generating an anti-fault, or solution
to a problem in certain cases. Reversible code has
been presented in previous work as a mechanism for
generating anti-messages in Time Warp simulation.
In this section the behavior of complexity with
regard to code and anti-code is discussed as well as
results leading towards the use of reversible code for
self-composing solutions.

The proposed hypothesis is that the Kolmogorov
Complexity of a combined fault and solution
description is minimized when the optimal solution
to mitigate the fault is composed. A nearly trivial
example can be seen with reverse code. Assume that
fault data, F exists. Assume that the fault does not
erase any data but merely transforms it. Define the
algorithmic description of the fault data PF(). The
reverse code forPF() will be labeled RPF().
AssumePF() and RPF()are minimal length programs.
Then, RPF(PF())= φ where φ is the empty set. RF is the
data generated by RPF(). Since the fault does not
erase any data, the process is reversible [30] and
therefore, or K(RF) – K(F) = 0. The equivalence in
complexity RF and F follows from the fact that
because there is no loss or gain of complexity when
the system is restored to its prior state using the anti-
fault process RPF, there is no work performed. The

algorithmically reversed fault will be referred to as
an anti-fault in this paper.

Consider reversing AVNMP processes in more
detail. Details of AVNMP operation are described in
[16] however, a brief description is provided here
using a Case Diagram. The Case Diagram shown in
Figure 105 describes the AVNMP Management
Information Base (MIB). Arrows indicate informa-
tion flow; labeled short lines indicate counters, and
labeled arrows represent information flow that is
counted. Active packets arrive through the active
channel to the AVNMP Logical Process. The total
number of packets entering the Receive Queue is
maintained in logicalProcessQRSize. In addition, the
Local Virtual Time is sampled via logicalProcessLVT.
Next the State Queue, which holds past, present,
and predicted state values, is updated. Any rollbacks
that may occur are counted. Next the Send Queue
transmits any output messages generated by the
AVNMP Logical Process. The logicalProcessAntiMes-
sages counter counts anti-messages separately.

Now consider the effect of reversible code using
the SNMP Case diagram previously discussed in
Figure 105. First, it is important to distinguish
between the Physical and Logical Process. The Physi-
cal Process is the model of the actual system injected
into AVNMP. This is in contrast to the Logical Pro-
cess, which is the entire AVNMP supporting imple-
mentation that includes the Physical Process as well
as possible state saving, rollback, and anti-message
capabilities. Note that it is the Physical Process, that
is, the object being modeled that must be reversed,
not the AVNMP Logical Process described in
Figure 105. Case Diagrams shown in Figure 106 and
Figure 107 represent the Physical Process. A process
operating in reverse would be required to effectively

Figure 105. AVNMP SNMP Case Diagram.

81

5.3 Distributed denial of service example

reverse all ar row directions resulting in an effective
decrement of counters. This is the purpose of roll-
back and anti-messages. By chasing the original mes-
sage, the anti-message may cause additional
rollbacks to occur which, in a state saving system,
causes previous state values to be restored to a
known valid state. When implemented using revers-
ible code, the anti-message actively undoes the effect
of the original message(s). The original messages to
be rolled back are input to a reverse code version of
the physical process in reverse order of their Receive
Times. Instead of reversing a process that persis-
tently resides on a node, one could imagine revers-
ible active packets. The next section discusses a
specific application of anti-faults, pointing out
potential disadvantages with such a technique.

5.3 DISTRIBUTED DENIAL OF SERVICE
EXAMPLE

In the previous section, it was suggested that gen-
eral-purpose fault correction might be automated by
reversing the algorithmic fault description. This sec-
tion considers the effect of such a mechanism rela-
tive to a particular fault, namely a Distributed Denial
of Service (DDoS) attack. We will see that simple
fault reversal may not always be the best solution,
particularly when irrevocable events have occurred,
such as the theft of resources. Consider a Distributed
Denial of Service (DDoS) attack as a fault. Kolmog-
orov Complexity has been used to detect likely
DDoS attacks in [154]. Note the assumption that this
is an Active Network, thus, the DDoS attack can con-
sume both bandwidth and processing. Referring
back to Figure 104 one can see that AVNMP continu-
ously updates predictions on anticipated load
throughout the system based upon legitimate net-
work use. In the situation illustrated in Figure 106, a
simplified snapshot of packet forwarding is illus-
trated in which packets entering network interfaces
x, y and z are forwarded outward through interfaces
a, b, c. The Case Diagrams in Figure 106 and
Figure 107 represent a more detailed model of infor-
mation flow. Remember that these flows describe
the Physical Process as mentioned in the previous
section. As protocol data units move through the
network interfaces, the Simple Network Manage-
ment Protocol (SNMP) counters shown in
Figure 108 will maintain current state in separate

MIB table rows for each interface.
A hypothetical set of traffic load graphs is shown

in Figure 109. A simple algorithmic form of the load
might be as shown in the figure at time t, namely
a = x + 2y + 10z where x, y, and z are output inter-

Figure 106. Case diagram for IP.

Figure 107. Statistics maintained for each interface.

Figure 108. Traffic through interfaces.

82

 5. Fault Identification and Extraction

faces and the numbers indicate load, in number of
packets, on those interfaces. The fault data (F) is the
difference between the load in the AVNMP and
Actual graphs. The algorithmic description of the
fault (PF()) is the code that forwards nine packets
from interface x to interface a. The reverse code
(RPF()) would transmit 9 packets from a back to x,
essentially reflecting the attack back towards the
source as illustrated in Figure 110. The authors rec-

ognize that simply reflecting packets would increase
network load, effectively increasing the impact of an
attack. This is a disadvantage of blindly using anti-
faults. In this case, it is disadvantageous to blindly
use anti-faults because the fault process performed
the irreversible actions of using up bandwidth as
well as processing units. The best option in this case
might have been to simply attempt to quench attack
packets while moving closer towards the source of
the attack. This would bring the actual system closer
to the expected operation provided by the AVNMP
model, namely H → He.

The goal of the anti-fault was to place the system
back to a healthy state that existed before the fault
occurred. The naïve anti-fault described above,
while relatively easy to implement, attempted to do
this by reversing events, some of which were irrevers-
ible. For example, once a resource, such as band-
width or CPU has been stolen at a particular
instance of time, it cannot be returned. Additionally,
the attempt to transition the System State backward
in time to a healthy condition temporarily increased
the impact of the fault. Research required to achieve
the effective reversal of faults in a more controlled
manner using complexity is outlined next. A Swarm
simulation of system complexity is used to study the
relation to Kolmogorov Complexity.

5.4 TOWARDS COMPLEXITY-BASED
SOLUTION COMPOSITION

This section discusses a general approach for self-
composing solutions using lessons learned from the
previous section. The approach can be described as
the automated generation of a solution hypothesis
Hs = R(He – Hf), i.e., the reverse of the algorithmic
difference between the faulty and correct algorith-
mic representation of behavior by controlled means.
As H deviates from, heat [28],[29] or complexity as
presented here, is generated. In [28] and [29] the
relationship between fault and energy is explored
and simulated (see [18] and [21] for recent work on
complexity and energy and Information Assurance).
It is useful to briefly describe [28] in order to pro-
vide a tangible background and explanation for the
algorithmic fault detection approach. The motiva-
tion for that experiment came from the relationship
between Kolmogorov Complexity and entropy. The
definition and application of Kolmogorov Complex-
ity to vulnerability analysis (discussed in [21]) identi-
fied how Kolmogorov Complexity can be used to
determine vulnerabilities in a system as areas of low
complexity. An underlying hypothesis of our work is
that computation and communication are funda-
mentally related and conversely bandwidth and pro-
cessing denial of service are fundamentally
interrelated. Low complexity data or code consum-
ing large amounts of bandwidth or processing indi-
cates the likelihood of an attack. A model of
complexity evolution within a closed system is
described in reference [18]. That reference devel-
oped an abstract model with which to study com-
plexity, specifically Kolmogorov Complexity, of
information within an information system. That

Figure 109. Predicted versus actual load.

Figure 110. Reflecting the attack via code reversal.

83

model explores K(x), a measurement of length in
bytes, and K(x)/s, a measure of the maximum
increase in complexity of the system due to code
entering a system such as code carried by active
packets. The rate of complexity increase in terms of
algorithmic active packet complexity in units of
within the closed system was measured. Significant
changes in system complexity indicate the presence
of faults. Reference [154] reported the results of
Kolmogorov Complexity probes that detect Distrib-
uted Denial of Service attacks.

Complexity estimation mechanisms for these
experiments have been developed in Mathematica
using a package developed specifically for the study
of complexity, particularly within active networks.
This package contains several functions for the esti-
mation of complexity, shown in Figure 110, includ-
ing a finite automata minimization technique and
an entropy-based compression technique. The pack-
age also contains a framework for simulating trans-
mission of data in user controlled combinations of
algorithmic and passive forms within active packets.
After testing in Mathematica, the implementation
has been integrated into an active network [16] as
Java code that can be easily inserted into Magician
[31] active packets. The complexity probe returns
an estimate of the smallest compressed size of a
string. It is based upon computing the entropy of
the weight of ones in a string. Specifically it is
defined in Equation 15A where x#1 is the number of
1 bits and x#0 is the number of 0 bits in the string
whose complexity is to be determined. Entropy is
defined in Equation 15B. The expected complexity
is asymptotically related to entropy as shown in

Equation 15C. See [153] for more advanced mea-
sures of empirical entropy and their relationship to
Kolmogorov Complexity. The expected complexity
is asymptotically related to entropy as shown in
Equation 15C.

(15)
In references [18] and [28], a Swarm simulation

containing agents representing data points from a
system, specifically, Simple Network Management
Protocol (SNMP) Management Information Base
(MIB) object values from a communication network
were programmed to initially move in a randomized
manner. Thus, the agents began with high location
entropy and no detectable pattern formation
resulted initially. This mechanism was used to maxi-
mize the ignorance of the prior probability, which is
also the purpose of the universal probability, M()
[27]. The location distribution of Swarm agents, x,
represented the health of the system. The predictive
capability can be viewed as the ability, given x, to pre-
dict the type and severity of a fault condition pat-
tern, y. The goal is to predict M(y|x). From Bayes
Theorem [30] the problem can be stated as shown

Figure 111. Selected mathematica complexity functions.

A

B

C

K̂ x() l x()H≈() x#1
x#1 x#0+
------------------------- 
 

2
l x()()log+

H p() p
2

p 1.0 p–()
2

p 1.0 p–()–log–log–=

H X() P X x=()C X()
l x() n=
∑≈

84

ln[l]:= Needs["ConplodLty'KEstlnates "]

ln[2]:= ? *CciifilexitY

Complexity KEstim at es'

AutQComplex ity Str ingAutomatonCcinnplex ity StringComp lexity

ScringComplexity[s, opts) returns an estimate of the complexity of a bit string,

lnt3]:= ? ^Corr^nressdjon

Ccmpcessiont i) retiirns the compressed size of a binary list of bits.

 5. Fault Identification and Extraction

in. Figure 112 shows the relationship among

AVNMP hypothesis deviation, entropy, and complex-
ity in the feedback mechanism designed to maintain
system health.

Faults, representing MIB object values that oper-
ated outside of a preset threshold generated heat
proportional to the amount by which they exceed
the threshold, |He – H|. The agents were attracted
towards the location of heat. An accurate heat prop-
agation model was used in the simulation to model
heat dissipation within a finite two-dimensional grid
upon which the agents resided. With the generation
of heat, the agents moved in a consistent direction
towards the heat, and then clustered together in a
circular pattern around the heat resulting in a loss
of entropy. In a sense, the introduction of entropy
via heat energy caused a reduction in entropy of
agent location. Equation (17) and Equation (18)
indicate the most accurate prediction for fault pat-
tern location distribution y is one that minimizes the
difference in length between the program that gen-
erates x and the program that generates xy. Clearly,
in the perfect operation scenario, movement was
programmed by default to be as randomly generated
as possible. The program size required to define the
location of each agent was on the order of the size of

the entire grid. As heat was increased, cluster pat-
terns increased in number and size, causing the
location distribution to be describable by smaller
formulae, thus lower complexity. The cluster pat-
terns were hypothesized to represented the type of
fault while the complexity, or size of the algorithmic
description of the cluster patterns, estimated the
severity of the fault.

Equation (17)

Equation (18)
The Swarm complexity model is only as good as

its ability to reflect complexity changes in an actual
system. An actual system contains many subtle corre-
lations that may be impossible to fully specify in
detail. However, let us begin with a controlled exper-
iment involving a DDoS attack. Swarm agent loca-
tion over time represents complexity in this
experiment. Swarm heat is a control mechanism that
effectively introduces correlation and reduces com-
plexity. The goal is to model information flows in
which Swarm agents represent blocks of time aver-
aged active packets in the DDoS differential com-
plexity window described in [154]. Heat represents
potential correlation that indicates potential DDoS
attack. We begin by calibrating Swarm heat parame-
ters to match known Magician DDoS complexity esti-
mations. The attacker varies the correlation within
the Magician attack stream. The Swarm model is cor-
respondingly varied and the results compared and
contrasted with the actual Magician system.

5.5 SUMMARY
A Kolmogorov Complexity estimate is used to drive
the optimal generation and composition of solu-
tions. System faults are represented in an algorith-
mic form. Reversible code is then developed to
remove the effect of faults in a system. The applica-
tion in this paper focuses on an active network in
which information, algorithmic and static, can be
transmitted in a fine-grained manner.

Figure 112. Hypotheses, complexity, and entropy in anti-fault
generation.

Equation (16)

M y x() M xy()
M x()

---------------=

M y x()log M xy()log M x()log–=

µ y x()log Km xy() Km x()– () 1()–=–
x ∞→
lim

85

6. Information Assurance
6.1 ANALYSIS OF THE EVOLUTION OF

COMPLEXITY
A defender would like to know not only the average
complexity of the system, but also the change in
complexity over time. The goal of this section is to
attempt to address the macroscopic behavior, or evo-
lution, of complexity in order to understand how
complexity relates to vulnerability and the ever-
increasing cycle of attacker/defender complexity as
each improves their capabilities. Even if complexity
can be measured at various locations within an infor-
mation system as discussed later in this report, the
system may evolve. It is critical to know if bounds on
complexity evolution exist so that complexity
“probe” locations can be optimized. Understanding
the evolution of complexity can also lead to optimal
sampling of the probes so that they are not over-sam-
pled, causing wasted network resources.

Using Definition 6.4, the evolution in complexity
can be crudely characterized by placing initial esti-
mated values into Definition 6.4 and recursively
computing the complexity of the output y = p(x).
The output, y, is a data bit-stream and can sometimes
be an executable program, p(). The resulting evolu-
tion is a series of the form {y}, where. The character-
ization of this series depends upon the initial values
in Definition 6.4, namely L(P), K(x), c, and the mag-
nitude of the inequality from which K(y) is derived.

In order to provide convenient measurements for
comparison with the macroscopic results discussed
later in this report, the metrics are defined in a man-
ner independent of factors influenced by the opera-
tion of the system itself. These include such
parameters as wallclock time, number of program or
data bit-strings, or initial location, rate, and direc-
tion of movement of entities within the system. The
metrics analytically derived from Definition 6.4
include, E[K(y)], E[L(y)] where K is the estimated
Kolmogorov complexity and E[] is the expected
value. The number of cycles, or evolutions, of Defini-
tion 6.4 is used to control the termination of the
analysis. In the emulation described later in this
report, a program can terminate early or continue
executing forever; both are the results of input not
being what is subjectively called a valid program.
This analysis assumes that neither event happens.
Both events result in fewer bit-strings in the actual

system than in the analysis. The manner in which
these events are handled in the actual emulation is
discussed in more detail later in the report.

The analytical results obtained are shown in
Figure 113 using Definition 6.4 where the constant

and inequality are determined from a compression-
based estimate of a single specific program, input,
and output complexity measurement. The more
inefficient the program, where program efficiency is

, the more rapidly the complexity can evolve

per program execution. The specific program whose
complexity estimates are used in Figure 113 are
from the program used in the emulation described
later in this report.

Given the means to monitor estimates of com-
plexity within an actual, highly dynamic, and evolv-
ing information system, trends that support the
theoretical bounds on complexity should be observ-
able. The next section attempts to construct such a
system by obtaining measurements of bit-string
lengths, complexity, and Turing Machine program
transitions executed in a highly dynamic environ-
ment in which programs, data, and machines come
together sharing information in a large-scale system.

Emulation of complexity evolution
The effort to implement a model of the evolution of
complexity is called emulation rather than simula-
tion because the computation and complexity under
analysis are part of the model itself. The primary
goal of this emulation is to examine trends in the

Figure 113. Definition 6.4 with Estimated Complexities for the
Data and Program.

InfoAssurance[1].pdf Figure 7.1

K p()
L p()

86

0.8

0.6

£ 0.4

0.2

■->^
1 ■ ,

\^

K(Y)
 K(Y)/L(Y)

•^

■^

- -_.

Evolutions

evolution of complexity in a highly complex inter -
connection of information systems. In particular, an
initial set of carefully controlled environmental
parameters should include initial program and data
complexities and lengths as well as the rate of
exchange and transport of information. Given an
initial set of programs and data bit-strings let loose
to execute in a closed environment, how does the
complexity evolve? At what rate does complexity
increase and why? What affects its rate of increase
and why? What would cause it to decrease, at what
rate, and why? What is the relationship between the
microscopic level, that is, a single program execu-
tion, and the macroscopic level? What is the rela-
tionship between the complexity of a program and
the complexity of the output it generates? Does the
microscopic change in complexity hold at the mac-
roscopic level and can more detail be deduced about
the bound on complexity that it describes? What is
the relationship of program execution, that is, Tur-
ing Machine state transitions, to output complexity?
How do controls on information exchange affect the
evolution of complexity? How does a set of pro-
grams, some that increase complexity and some that
decrease complexity, affect the evolution of the total
system complexity? This work attempts to lay the
groundwork for answering these questions by com-
paring and contrasting the microscopic and macro-
scopic levels of complexity.

The system used for experimental study of com-
plexity should mirror a large-scale, highly dynamic,
yet easily controlled environment that is representa-
tive of actual information exchange and evolution in
a variety of real world information systems. The
approach taken in this effort to understand the evo-
lution of complexity is illustrated in Figure 114. A
Swarm (http://www.swarm.org) model has been
developed that provides an open framework for
experimentation on Complexity Theory and its rela-
tionship to information assurance. The Swarm emu-
lation has been programmed with three types of
entities: Turing Machines, programs, and data bit-
strings. Multiple entities of each type exist and are
represented in Figure 114. The program is repre-
sented by a set of states connected by transitions, the
bit-string data by binary digits within a rectangular
array, and the computer chip represents the Turing
Machine. Each entity is placed in a random location
within a field of attractive force, causing data bit-
strings to be attracted towards programs and pro-
grams towards Turing Machines. The system can be

viewed as a two-dimensional grid shown in
Figure 115 with a possibility of four types of objects

residing on any grid location, as shown in Table 9.
Note that all interactions and control decisions are

made by the local entities; there is no global control.

Table 9 Entities and Their Representation in the
Emulation

Entity Representation

Turing Machine Yellow—only when active

Tape Green—lighter shading when
more complex

Turing Machine
Program

Green—lighter shading when
more complex

Heat Red—Darker when hotter

Figure 114. Emulation Components and High Level Dynamics.

InfoAssurance[1].pdf Figure 7.2

Figure 115. CyberSwarm Simulation at 100 and 300 Time Units.

InfoAssurance[1].pdf Figure 7.3

87

Program

Turing
Machine

Attractive Force Field

 6. Information Assurance

The motivating factor for each of the entities is heat.
Each entity generates a small amount of heat that is
determined probabilistically within a range specified
as a startup parameter. Heat can represent the initial
flow of information that causes one entity to become
interested in working with another and form groups
that are not too small or too large. Using energy to
represent information is discussed further in [24].
The mechanism that implements this clustering
behavior is the fact that entities are endowed with a
desire to maintain an ideal temperature and will
cluster together via a randomized movement pattern
in a direction seeking to maintain their ideal tem-
perature. Heat diffuses through the system in a real-
istic manner. The brightness indicates the estimated
complexity of an entity – dark green indicates a low
complexity, brighter green indicates a higher com-
plexity. In order to provide a preview of how this
emulation is designed, Figure 115 shows the emula-
tion at times 100 and 300 units respectively. These
figures should be viewed in color in order to see the
full interpretation. If a Turing Machine, program,
and data input tape meet, the program is executed
and the program output tape generated by program
execution is added to the system – available for use
as data input in further computations. Figure 115
highlights two clusters: the circled cluster on the left
is dark because the bit-strings have low and no Tur-
ing Machine to enable computation while the right
cluster is brighter because it contains more compu-
tational activity and growing per bit-string. The clus-
ters are attracted to one another and eventually
form a single larger, brighter cluster.

There are two levels of abstraction occurring
simultaneously in this system. The first level is indi-
vidual goal-directed behavior and information
exchange; the second is computation. In the first
level of the abstraction, heat is a representation of
motivation for movement towards common areas.
The entities are initially located randomly through-
out the two-dimensional space and gradually cluster
together seeking to reach an ideal temperate. There
is complexity in the location and movement of the
entities. Movement towards common areas allows
information exchange to occur. At this level of
abstraction, concepts such as access control in the
exchange of information can be explored; however,
that is outside the scope of this report. The second
level of abstraction is focused on computation. That
is the primary focus of this report. The first level of

abstraction provides the highly dynamic system in
which the second level, computation, takes place.

The Turing machine
The Turing Machine entity enables a program con-
sisting of sets of states and transitions to operate.
The Turing Machine is one of the most fundamental
general computing abstractions and is well-known in
computer science, having a rich theory of its own
that this report intends to utilize to its advantage.
The Turing Machine consists of a seven-tuple (Q, T,
I, δ, b, q0, qf). Q is a set of states, T is a set of tape sym-
bols, I is a set of input symbols, b is a blank, q0 is the
initial state, qf is the final state. δ is the next move
function. δ maps a subset of Q × Tk to Q × (T × {L, R,
S})k. L, R, and S indicate movement of the tape to
the left, right, or stationary respectively. There can
be multiple tapes. Given a current state and tape
symbol, δ specifies the next state, the new symbol to
be written on the tape, and the direction to move
the tape. The sets of symbols that lead to an accept-
ing state (qf) is the input language (∑). The Turing
Machine object, when loaded with a valid program,
can execute the program when provided with an
input tape. A program resides on a tape; the only dif-
ference between a program and a tape is that a pro-
gram is a set of instructions that the Turing Machine
can interpret as a program. If the program fails, that
is, it is not a syntactically valid program, the Turing
Machine will eject it. If the time taken by program
execution on a Turing Machine exceeds a specified
time limit, the program is forcibly terminated. The
Turing Machine entity enables the execution of pro-
grams described in the next subsection. The Turing
Machine entity’s complexity is not included in any of
the complexity related measurements.

The program
Valid syntax in the program implementation consists
of a set of states, Q, where each state, q, is defined as
a set of tuples: {…(value-to-write, tape-direction,
next-state)…} such that there is one tuple per alpha-
bet symbol. The alphabet, I, in this emulation is
assumed to be a set of integers starting from zero. I
maps onto q such that an input value read from the
tape points to the correct (value-to-write, tape-direc-
tion, next-state) tuple within state q. Note that the
value-to-write is written before the tape is moved.
The tape-direction (L, R, and S) is represented as (0,
1, and 2). A next-state of negative one (–1) indicates
a valid end of program and is included in length and
complexity measures of the program. The initial

88

6.1 Analysis of the Evolution of Complexity

program has an estimated complexity of 0.7917 and
length of 24 bytes.

The input and output tapes for the turing
machine
The implementation of the tape, T, is simply a string
of numbers. An example input tape looks like:
(…1,2,3…). The tape is bi-directionally infinite;
movement can occur infinitely to the left or the
right. Zero (0) is returned when blank spaces are
read from the tape. The length and complexity of a
tape includes only the values which were initially on
the tape or written to the tape during a program
execution and not the infinity of zeroes in either
direction. In order to prevent explosive growth in
the amount of data generated during an execution
of the emulation, program and data tapes are imple-
mented as circular queues. Once a specified tape
length is reached, the oldest data is overwritten. The
initial input data has an estimated complexity of 1.0
and the estimated output data complexity is 0.8571.
The initial input length is 5 bytes and output has a
length of 7 bytes.

The attractive force
Heat is the attractive force that pulls the three main
object types together. The objects generate heat and
attempt to maintain an ideal temperature by group-
ing together. They can also be repelled if the tem-
perature is above the ideal temperature. An accurate
model of heat diffusion on the two dimensional grid
is included as part of the simulation. Heat genera-
tion, evaporation rate, and the diffusion constant
within the two-dimensional grid are specified in
Table 10. A discrete approximation to diffusion is
used from Definition 7.1 where nbdavg is the
weighted-average of the eight adjacent neighbors.
Heat is initially set uniformly for each bug from the
range specified in Table 10. The motivation for an
entity to move is determined by its unhappiness as
defined in Definition 7.2.

This report presents results relating to the search
for a fundamental understanding of information
assurance. The results from this research enable a
deeper understanding that leads towards quantifica-
tion of vulnerabilities, measurement, control, and
composition of information security safeguards, as
well as new types of safeguards. The main result of
this work is a unified view that enables information
assurance to be engineered as an integrated feature
of an information system. Results from this work are
integrated with an existing tool, called NIPAT, which

displays a measure of the security of a system
through an electrical engineering paradigm (Sec-
tion 3). Other attempts have been made to repre-
sent information assurance in similar grid formats.
NIPAT is used as a representation of generic grid-
based techniques so that the strengths and weak-
nesses of such approaches can be determined.

Figure 116 illustrates the approach taken in this

research towards building a foundation for engi-
neering information assurance. This work began by
developing a computational model upon which to
test and build information assurance concepts. In
the next layer of the information assurance frame-
work a feasible metric was developed through inter-
action with the information assurance model. In
conjunction with the information assurance model
and metric space developed through the induced
topological framework, insights gained through

Table 10 Emulation Control Variables

Emulation Variable Value

Initial length of data and program
strings in bytes

(5, 24)

Initial spatial distribution of strings
and programs and turing Machines

Random

Proportion of strings, programs, and
Turing Machines

(0.3, 0.3, 0.4)

Functional activity of programs Shuffle Input Data

Heat evaporation rate and diffusion
constant

(0.99, 1.0)

Heat generation of entities chosen
uniformly from the range

3,000–10,000

Ideal temperature chosen uni-
formly from the range

17,000–31,000

Emulation run time in simulation
time units

400

Figure 116. Architectural layers for information assurance.

89

 6. Information Assurance

viewing infor mation as a physical phenomenon were
developed. Electrical engineering and brittle sys-
tems analysis are specific examples, tangible to users,
of these physical insights. While Figure 116 appears
as a simple construction with each layer building
upon the one beneath it, in reality the research has
been an iterative process where one layer is used to
help support or validate another layer. As a specific
example, the Turing Machine may be viewed as a
specific computational model, Kolmogorov Com-
plexity as inducing a metric space, and Brittle Sys-
tems, derived from materials science, as an analysis
of fundamental tradeoffs in the information assur-
ance performance of a system. Physics of informa-
tion has contributed towards understanding the
conservation of complexity by providing the insight
to look for conserved properties related to informa-
tion assurance. Complexity-based vulnerability analy-
sis (Section 9), sits at the level of the induced
topological framework. Complexity-based vulnera-
bility analysis plots the complexity measure of a sys-
tem. Using this information, the conservation
principle from physics of information, brittle sys-
tems analysis, or electrical engineering principles
may be applied in order to engineer the desired
properties into the information system. Learning
from the strengths and weaknesses of the above
approaches, this research has driven deeper into the
nature of information assurance through a series of
original hypotheses and theorems. The complexity-
based approach derived through this series of
hypotheses and theorems provides a general unified
theory for understanding the fundamentals of infor-
mation assurance. The results from our complexity-
based approach can be used synergistically with
other approaches.

This report begins with a brief overview of rele-
vant research that has attempted to understand the
properties of information in terms of well-defined
scientific and engineering disciplines. Next, the
desirable properties of a metric for security are
examined (Section 3.3). In order to further the
development of a realistic metric, a general model
for studying information assurance is proposed (Sec-
tion 4). Next, a definition of vulnerability is pro-
posed in terms of the new model based on Turing
Machines (Hypothesis 4.1), and engineered proper-
ties of information assurance with an analogy to
mechanical engineering are proposed in terms of
the new model. The analogy with mechanical engi-
neering is called Brittle Systems (Section 5) and

involves the design of information assurance in a
manner that accounts for tradeoffs in performance
and degradation of information assurance in a sys-
tem. Information assurance is also viewed from the
perspective of set theory and a topological space
(Section 3.5). This is particularly relevant in under-
standing the operation of the metric in terms of
secure composition and the limits of applying safe-
guards to a system.

Continuing the outline of the rest of the report, a
key contribution of this effort, the development of a
particular information metric, is presented. Before
this point, the report has examined in detail only
the properties of a metric, not an actual metric. The
metric proposed is Kolmogorov Complexity
(Section 6). The advantages and drawbacks of this
metric are discussed, including its incomputable
nature. However, computable estimates (Section
6.2) of Kolmogorov Complexity are proposed next,
as well as additional useful applications of Kolmog-
orov Complexity for communications in general.
These additional applications are important because
they demonstrate how information assurance should
be an integral part of information system design.
Next Theorems 6.1 and 6.2 concerning the conser-
vation of complexity (Section 6.7) within an infor-
mation system are discussed. This leads to a Swarm
experiment that monitors the evolution of complex-
ity in a dynamic and complex system and examines
our ability to monitor the complexity as it evolves.
Unless vulnerabilities can be identified and mea-
sured, the information assurance of a system can
never be properly designed or guaranteed. Results
from a study on complexity evolving within an infor-
mation system using Mathematica (Section 9.2),
Swarm, and a new Java complexity probe toolkit
(Section 9.4), developed by this project, are pre-
sented in this report. An underlying definition of
information security is hypothesized (Hypothesis
9.1) based upon the attacker and defender as rea-
soning entities, capable of learning to outwit one
another. This leads to a study of the evolution of
complexity in an information system and the effects
of the environment upon the evolution of complex-
ity. Understanding the evolution of complexity in a
system enables a better understanding of how to
measure and quantify the vulnerability of a system.
Finally, the design of the Java complexity probes
toolkit under construction for automated measure-
ment of information assurance is presented (Section
9.5). Appendix A presents a dialog in which typical

90

questions about the relationship between complex-
ity and information assurance are posed and
answered. This dialog is best read after reading the
introduction Kolmogorov Complexity (Section 6.1)
or for someone already familiar with complexity the-
ory who wants a quick overview of the approach
taken on this project toward the relationship
between complexity and information assurance.
Appendix B presents the design for an experiment
that could be run to validate the complexity-based
vulnerability analysis concept (Section 9). Appendix
C provides more detail on the design and operation
of the NIPAT security tool.

6.2 EXPERIMENTAL RESULTS FROM THE
EVOLUTION OF COMPLEXITY

This section presents the results obtained from the
emulation and their relation regarding the theoreti-
cal definition of complexity discussed earlier in this
report as well as their relation to vulnerability analy-
sis and complexity measurement in general. In this
emulation, the three types of computationally
related entities (data, programs, and Turing
Machines) are initially distributed in random loca-
tions within the two-dimensional grid-space. Each
entity generates a fixed amount of heat during the
emulation run. Each entity also has an internal vari-
able termed its “unhappiness” which is a normalized
distance of the entity is from its desired tempera-
ture. An entity cooler than its ideal temperature will
move one grid-space per time unit in the direction
of warmth. As entities congregate, heat increases
forming red hazy hot spots on the grid.

Begin with a single entity that contains a Turing
Machine, program, and data. This single entity will
evolve by executing its program upon its current
data at each time step. In Figure 117 the number of
program transitions is compared and contrasted to
the data bit-string length. Note that all bit-strings are
contained in circular queues of size 100 bytes. Once
the queue is filled, the oldest data is overwritten with
newly generated data. Thus, there is a bound on the
maximum space available. There are several reasons
for using the circular queues. The first is a practical
reason; unlimited growth quickly slows the real-time
execution of the emulation. Also, in reality, one gen-
erally does not feed all available data into a program
if it is not necessary for exactly the reason men-
tioned. Finally, the cumulative effects of new data
complexity will more quickly become apparent if the
older data is eventually discarded.

In Figure 118, the resulting complexity is plotted

for each evolution, that is, for each program execu-
tion. Note that this complexity measure includes the
program complexity itself. However, as the program
does not change for the results presented in this
report, the decrease in complexity is due to the data.
It should be noted that the program executed shuf-
fles the input data to generate the output data.
Clearly, the complexity reaches a minimum constant
value in Figure 118.

In order to begin to study the relation of position
with complexity, a metric called envelopment has been
defined as the complement of the inverse of the
number of directly adjacent neighbors of an entity as
shown in Definition 8.1. The value plotted in the fol-
lowing graphs is the expected value for all entities in
the system. High values of envelopment cause a reduc-
tion in the location complexity. Clustering produces

Figure 117. Single Entity Transitions and Length.

InfoAssurance[1].pdf Figure 8.1

Figure 118. Single Entity Change in Complexity.

InfoAssurance[1].pdf Figure 8.2

91

I, 3000

5 2000

..........

/
stale Transitions
Bit-String Lengtii ._ _.

y /

.-^

^

/

^

^^^^^^
1 . . . 1 ■

20 40 60

Time

80 100

1.62

1.61

•^ 1.6
1
15 1.59
E

■■a 1.58
lU

1.57

1.56

1.55

r'' .

\ ^^X?,iK(d,) + Up,) —
\ XJL J^ ± _„

20 40 60

Time

80 100

 6. Information Assurance

more heat, thus raising the “happiness” of the enti-
ties within the cluster as can be seen in Figure 119.

Envelopment or clustering raises the possibility
that programs, data, and Turing Machines will meet.
When any two different entities meet, the contents
of both are copied to each entity. Note that a com-
plete representation of the system would have to
include the movement and exchange of data. This is
purposely not included in our results; instead, a sam-
ple of sub-component complexities is examined. It
would be rare, especially in today’s communication
networks for example, to have complete access to all
relationships. Typically only the data points pre-
sented by an SNMP MIB, for example, are available.
When an entity contains program, data, and Turing
Machine, it executes the program generating new
data. Figure 120 shows the number of data and pro-
gram exchanges (labeled Data Cp, Prog Cp in
Figure 120) with program execution enabled
(labeled w Ex in Figure 120) and without program
execution. Program execution lags data and pro-
gram exchange by a small amount, because program
execution cannot proceed until all three entities
meet. Also, when program execution is enabled
many more exchanges take place. This is because
program execution creates new data to be
exchanged. When execution is enabled, the amount

of data in the system rises rapidly. All data previously
gathered by an entity, bounded by the size of the cir-
cular queue, is fed into a Turing Machine when pro-
gram execution occurs. Each Turing Machine is
equipped with a timeout mechanism so that the pro-
gram will forcibly end in case of endless loops, or
simply too much data. The number of forced-time-
outs is shown in Figure 121. Any data generated

before the timeout is considered valid output. There
were no program exceptions in this case.

Figure 119. Envelopment and Happiness.

InfoAssurance[1].pdf Figure 8.3

Figure 120. Data Exchanges and Generation with and without
Program Execution.

InfoAssurance[1].pdf Figure 8.4

Figure 121. Program Timeouts.

92

1 F
0)
«
c
a 0.8
&
£

D 0.6
■D
C
CB
^ 0.4
0)
E
Q.
O 0.2

c
UJ

* 1 V*-.^

Unhappiness
Envelopment

- I

v__ ̂H^-***."-^
•^»AM>*««I>^

100 200

Time

300 400

1000

800

600
c
3
o
^ 400

200

1
/ —'— Data Cp w/Ex

• ■— Data Gen w/Ex
—*— Progs Cp w/Ex
• DataCp
—■— Data Gen
• Progs Cp

j
f

y
y

100 200

Time

300 400

350

« JWU

3 o 250
<1)
E
F 200

F
n 150 ^
o>

0.
100

50

100 200

Time

300 400

6.2 Experimental Results from the Evolution of Complexity

In Figure 122, the state transition per bit-string

length shows the total number of Turing Machine
State transitions per length of bit-strings. Initially,
the system has no program execution, only informa-
tion exchange. It is possible for a zero, which indi-
cates end of tape, to be shuffled into the middle of
an output tape. Only the result up to the zero is
regarded as output; the remainder of the program
transitions may be considered subjectively as wasted
effort. Thus, the Turing Machine programs can exe-
cute state transitions without generating the equiva-
lent amount of output.

Now consider the focus of this work, complexity.
The complexity estimation used in this analysis is the
compression-based estimate of complexity described
earlier. In this emulation, the three main types of
entities are tagged and certain rules are enforced.
Thus, for example, data cannot execute a program
and a program cannot attempt to execute a Turing
Machine. Given this case, the authors hypothesize
that a given bound on the complexity will eventually
be reached in the system. In Figure 123, the esti-
mated complexity of the system grows faster when
program execution is enabled as contrasted with
entity exchange only. This is a key result. In a closed
environment with a fixed number of programs and
data, the only way for the complexity of an entity to
change is through exchange of information. No new
information is created except through copying
information from one entity to another. When the
Turing Machines are enabled in each entity, they
shuffle the input data, creating new data that is then
available to be exchanged with other entities.

Compare and contrast the total bit-string length
with the total bit-string complexity throughout the

emulation shown in Figure 124 with program execu-

tion. Notice that the total system bit-string length
increases at a much greater rate than the complexity.
This occurs because the initial activity is data and
program exchange as entities meet within the system
and data spreads through sharing. As information
sharing decreases because each entity already has a
copy of the information, the primary activity
becomes data generation through program execu-
tion.

In Figure 125, the complexity per length of data
is plotted. Notice that with program execution
enabled the complexity per length of data increases.
In the case of operation without program execution,
only a finite length of data exists. When the total
estimated complexity of the data within each entity
is plotted over time, the system with program execu-

Figure 122. Turing Machine Transitions and Bit-String Length.

InfoAssurance[1].pdf Figure 8.6

Figure 123. Total System Estimated Complexity.

InfoAssurance[1].pdf Figure 8.7

Figure 124. Bit-String Length.

InfoAssurance[1].pdf figure 8.8

93

iA i
19 /
in /

0 /
B J V

A y
y r

o
\\\ Bit-Strings

:
0 ^.y^

—•— /

—1
100 200

Time

300 400

160

^ 140 a

1 ""20

W

100

80

60

^ _,! Ill ^

^ r^
/

/
T

. — - — . w/Ex

: 1
100 200

Time

300 400

50

% 40
_i

+

H
20

10

^^

/
■

/.

y^jf^iMi^^^

r -

^
r ' L w/o Ex

. _ _ . L w/Ex

 \

100 200

Time

300 400

 6. Information Assurance

tion shows a marked increase in estimated complex-
ity over the pure exchange system.

In Figure 126, the expected value of the complex-

ity of all bit-strings contained by an entity is plotted
versus time. The larger curve shows the average
complexity per entity when program execution is
enabled. As expected, program execution with this
particular program, one that shuffles data, increased
the average system complexity. Note that the differ-
ence in complexity does not appear until approxi-
mately time 100. However, program execution
events began slightly before time 100. A question
important for systems that would make decisions
based upon complexity concerns the delay between
the time of the cause of complexity change and the
time for a measurable increase in complexity to
occur. This question is an interesting one that is out-
side the scope of this report.

This emulation validated several intuitive con-
cepts. The first involves complexity in a closed sys-
tem; that is, a system defined as a fixed number of
entities in which no data, programs, or Turing
Machines may enter from outside the system. A pro-
gram injected into the system that, on a microscopic
scale increases complexity generated greater average
macroscopic system complexity. The results of this
study also help to validate our initial hypothesis: the
greater the complexity, the more effort required to
understand it. The emulation with program execu-
tion, showing a higher complexity, required many
more probes in order to understand its behavior
than the system with only program and data
exchange enabled. This implies that an attacker,
with no a priori knowledge of the system, would have
a more difficult time understanding how to under-
stand and thwart the more complex system. This
leads to the next section on complexity-based vul-
nerability analysis.

6.3 COMPLEXITY-BASED VULNERABILITY
ANALYSIS

Automated Discovery of Vulnerabilities
without a priori Knowledge of Vulnerability
Types

Any vulnerability analysis technique for Information
Assurance must account for the innovation of an
attacker. Such a metric was suggested about 700
years ago by William of Occam [27]. Occam’s Razor
has been the basis of much of this report and the
complexity-based vulnerability method to be pre-
sented. The salient point of Occam’s Razor and
complexity-based vulnerability analysis is that the
better one understands a phenomenon, the more
concisely the phenomenon can be described. This is
the essence of the goal of science: to develop theo-
ries that require a minimal amount of random infor-
mation. Ideally, all the knowledge required to
describe a phenomenon should be algorithmically
contained in formulae. Observe an input sequence
at the bit-level and concatenate with an output
sequence at the bit-level. This input/output concate-
nation is for either the entire system or for compo-
nents of the system. If there is low complexity in the
input/output observations, then it is likely to be easy
for an attacker to understand the system. Hypothesis
9.1 explicitly states the means of measuring the com-

Figure 125. Complexity per Length.

InfoAssurance[1].pdf Figure 8.9

Figure 126. Expected Complexity over Time.

InfoAssurance[1].pdf Figure 8.10

94

0.03

0.028

0.026

E 0.024
_l

=W- 0.022

0.02

0.018

0.016

— wEx
- w/o Ex

100 200

Time

300 400

1.6

1.4

CL

2" 1.2

"o"
g 1

0.8

0.6

■a
 ^

y"^
/

7 '
y

r^
 • w/o Ex
- . I. - wEx

1
1

100 200

Time

300 400

6.3 Complexity-Based Vulnerability Analysis

plexity of a system component, or protocol interac-
tion, to a potential attacker.

Mozart and vulnerability analysis
Science is art and art is science. One of the most
mathematical of art forms is the composition of
music. Music is compressed and transported over
the Internet very frequently, and most listeners of
such music probably have little interest in the com-
pression ratio of a particular piece of music. How-
ever, this piece of information can be very
interesting and informative with regard to the com-
plexity of a piece of music. One would expect an
incompressible piece of music to be highly complex,
perhaps bordering on random noise, while a highly
compressible piece of music would have a very sim-
ple repetitive nature. Most people would probably
prefer music that falls in a mid-level of complexity;
sounds that are not repetitious and boring yet not
random and annoying, but follow an internal pat-
tern in the listeners’ minds. Music is a mathematical
sequence that the composer is posing to the listener;
the more easily the listener can extrapolate the
sequence without being too challenging or too easy,
the more pleasing the music sounds. Carrying the
music analogy forward in a more explicit manner,
consider the listener as an attacker and the com-
poser as the designer of an information system. If a
user has a preference for a given type of music, a
sample of that music can be included as a hypothesis
in an MML-based complexity analysis. The lower the
complexity the more appealing the music to that
particular listener. The more easily the listener can
extrapolate the musical sequence, the more vulnera-
ble the system.

Imagine the composer who wishes his music to be
enjoyed by only a specific group of listeners and no
others. The composer is constrained from generat-
ing a completely invulnerable system, that is, totally
random, because the composer wants the music to
be meaningful to at least some potential group of lis-
teners. Relating this analogy to the hydrostatic test
that was mentioned in the introduction to this
report, vulnerability is the quantification of the
potential leakage of music that is enjoyable to unin-
tended listeners.

In a very quick experiment, the following three
pieces of music were tested for complexity:
Beethoven’s Sonata Op. 27, No. 2 (“Moonlight”),
Mozart’s Sonata in A Major (“Alla Turka”), and
Philip Glass’s Opening to “Glassworks.” The encod-

ing explicitly represents notes, timing, dynamics,
and phrasing. Beethoven’s Moonlight Sonata has a
complexity rating of 0.13, Mozart’s Sonata has a
complexity rating of 0.16, and Glass’s Introduction
to Glassworks has a complexity of 0.03. Philip Glass
makes extreme use of repetitious arpeggios in his
work, thus the low complexity rating. This author
expected Beethoven to have a slightly higher com-
plexity than Mozart by a small amount, but it was the
reverse in this case. Note that one could decompose
the overall complexity to determine the complexity
of a composer’s use of rhythm, note structure, phras-
ing, or other musical components. Once a com-
poser’s typical complexity band is benchmarked; this
type of analysis could be used as an indicator to
determine authenticity. Additionally, one could con-
jecture that “learning” to model Beethoven or
Mozart might be more difficult than other compos-
ers.

Experimental validation of complexity-based
vulnerability analysis
A model information system has been implemented
in Mathematica to begin experimental validation of
complexity-based vulnerability analysis. The goal is
to determine the vulnerability, not only of the over-
all system, but also of system components. Vulnera-
bility analysis should be done without any a priori
knowledge about system operation or knowledge of
particular types of vulnerabilities. Expert systems
and vulnerability analysis tools that rely upon rules
identifying particular types of vulnerabilities are
inherently brittle and, in fact, meaningless against
an innovative attacker. Our Mathematica informa-
tion system model purposely does not include com-
ponent descriptions or explanations because the
goal is for the system to be a black box with respect
to vulnerability. The point is that a vulnerability anal-
ysis can be done without having to know the details
of the system. At the end of this analysis the func-
tions of the analyzed components are mentioned. It
should then make intuitive sense that a particular
component performing a simple operation had a
lower complexity than one performing a more “ran-
dom” operation.

Each component of an information system mod-
eled in Mathematica contains probe points through
which bit level input and output can be collected. A
complexity function based upon a simple inverse
compression ratio is used as an estimate of complex-
ity. The intent is to experiment with better complex-

95

 6. Information Assurance

ity measures as the project continues.
Figure 127shows results from complexity measures
taken of accumulated input and output of three sep-
arate components of the toy information system.
The graphs show the complexity of bit-level input
and output strings concatenated together. That is,
observe an input sequence at the bit-level and con-
catenate with an output sequence at the bit-level.
This input/output concatenation is for either the
entire system or for components of the system. If
there is a low complexity in the input/output obser-
vations, then it is likely to be easy for an attacker to
understand the system, as in Hypothesis 9.1. Note
that these graphs are showing estimates of Kolmog-
orov Complexity. If MML [37] were used, the
attacker’s hypothesis would be used to determine
the complexity relative to a particular attacker. In
Figure 127 the X-axis is the number input and out-
put observations concatenated to form a single
string of bits. The particular complexity estimate
used in this example is very poor; however, an ongo-
ing area of research is to improve complexity esti-
mates. Because of the inaccurate complexity metric,
all the figures show a rising complexity with the
number of accumulated observations. However,
notice the rate at which the complexity rises in each
of the figures. From Table 11, it would appear that
Component E is most vulnerable due to its low rate
of increase in complexity while Component B
appears to be the least vulnerable due to its steeper
rise in complexity. These results make intuitive sense
because Component E is simply transmitting data
without any form of protection while Component B
is adding noise to the data. This vulnerability
method does not take into whether a component
reduced or increased complexity; in other words
whether the change was endothermic or exothermic
complexity behavior.

These results show that vulnerabilities can be sys-
temically discovered. These vulnerabilities can be
quantified to a value within the bounds of the com-
plexity measure error. When used in an MML [37]

approach to complexity measurement, apparent
complexity, that is, complexity as seen by a particular
attacker can be determined. Thus, this work has led
towards automatic generation of vulnerabilities with-
out requiring expert knowledge of each type of vul-
nerability and in a more complete manner,
depending upon the number of components ana-
lyzed. Note that all possible combination of compo-
nents must be analyzed in this manner.

An information system should be designed in
such a manner that the apparent complexity of the
system under attack can be determined with respect
to the attacker and that information used to maxi-
mize the distance in the apparent complexity
between the attacker and defenders in an automati-
cally reconstituted system. An Active Network [16] is
an ideal environment in which to experiment with
an implementation of automated system reconstitu-
tion because it provides extreme flexibility in fine-
grain code movement and composition of code.
Apparent Complexity is used to reconstitute the sys-
tem such that the complexity difference is maxi-
mized between legitimate users and attackers of the
system. In this section, the discussion is limited to
the automated hardening of a system based upon
information about an attacker and a new form of
vulnerability analysis.

Design of a complexity-based vulnerability
analysis tool
A vulnerability analysis tool should quickly and effi-
ciently identify and display the vulnerability of an
information system ranging from an application, to
a node, network, or an interconnection of networks.
The tool should be portable, easy to use, and have
minimal impact upon a system. The tool should also
be integrated with the management of the system or
network. The approach taken has been to use the
lessons learned from the emulation in this analysis
to consider the design of a complexity-based vulner-
ability analysis system within the context of network
management. The Swarm framework in the emula-
tion previously described queries potentially large
numbers of entities much like SNMP polls data for
system management. A salient difference is that in a
Swarm model, simulation time can be controlled in
order to make certain that all data is queried at pre-
cisely the requested simulation step interval. How-
ever, design and minimization of the number of data
points to be collected, such that system operation
can be described as fully as possible, is exactly the

Table 11 Component Vulnerabilities

Component

C 19.6011

B 19.6302

E 19.0013

K x opstart:[]opend()

96

6.3 Complexity-Based Vulnerability Analysis

same in actual Management Information Base
design for system and network management.

While integration with system management using
a de facto standard such as SNMP is a future goal, a
set of Java packages implementing lightweight
“probes” that transparently gather data from a bit
stream and report the result to the vulnerability
analysis portion of the Java package has been devel-
oped. This design was chosen because the imple-
mented probes are extremely lightweight and also
initiate the transfer of bit-level data, rather than wait-
ing to respond to a management query. Once a bet-
ter understanding of complexity is obtained,
transition to implementation in SNMP will likely
take place. The Swarm emulation ran with 200 such
probes, one in each entity object and successfully
reported the results to the analysis package. The
authors intend to pursue the study of complexity
within an active network environment [16], particu-
larly with regard to network reconstitution in the
face of attack.

Future work to be addressed includes the best way
to present data collected from hundreds of complex-
ity probes and how to incorporate that data into a
useful integrated view, particularly in a network
management context. Much more detailed analysis
of the complexity emulation results is required as
well as modifications to the basic emulation in order
to understand the effects of access controls in the
exchange of information, the role of complexity in
automated service composition and fault tolerance,
and how complexity can best be used for determin-
ing network attacks and fault conditions.

Applying complexity to vulnerability analysis
Vulnerability analysis is defined as the process of
quantifying the vulnerability of an information sys-
tem to attack. An attack is defined as the act of an
unauthorized user extracting unauthorized informa-
tion from a system. As discussed previously, the infor-
mation system appears to the attacker as a natural
physical entity to be researched; its behavior
explored. Complexity, in the colloquial sense,
should be high for the attacker and low for legiti-
mate users. Kolmogorov Complexity is an omni-
scient being’s measure of absolute complexity; by
definition it measures the size of the smallest pro-
gram that can be generated. In a later section appar-
ent complexity is introduced as a potentially more
feasible measure. However, the use of complexity for
information assurance in general is discussed and

the term complexity will refer to Kolmogorov Com-
plexity in this section. In the steps that follow, a sim-
ple, idealized approach is discussed. Many
complicating details need to be addressed if this is to
be literally applied, however, it provides a starting
point for exposition of the concept.

The first step in computing complexity is to map
the entire observable portion of the information sys-
tem to a string. This string ideally represents data
points collected over the entire system at every
instant in time. Note that a data system includes arbi-
trary input, computation, and output. This is
included as part of the string. Including every possi-
ble input and output will result in an extremely long
string. From Definition 6.1, complexity is the length
of the minimal program running on a Universal Tur-
ing Machine that is capable of generating that
string. There is only one possible length for the
shortest program; thus the result is a single, ultimate
quantification of complexity.

The ability of the attacker to compute the com-
plexity of portions of the above string is directly rele-
vant to the attacker’s understanding and ability to
predict future behavior of the system. This includes
understanding the system’s vulnerabilities. Using the
method of computing complexity as described in
the previous paragraph would lead to an infinite
string; it is necessary to map the infinite into the
finite in order to make the process feasible.

There are a few observations that make the pro-
cess more feasible. The first is results-based scoping.
For example, the attacker is most likely to be inter-
ested in certain very specific results, such as obtain-
ing specific types of information. Thus, the attacker
can attempt to narrow the observation points in the
string to only those appear to be promising. On the
other hand, the defender of the information system
is primary concerned with intrusions and other fault
behavior that compromises Information Assurance.
Thus, the defender can narrow the scope to strings
that contain results that lead to those outcomes.

The second is spatial scoping of the string. For
example, the defender can compute the complexity
of various components in the system, instead of the
entire system. For example, only portions of the sys-
tem relevant to information access can be analyzed.
The result is a mosaic of localized complexity mea-
sures of the system. This is equivalent to computing
complexity over various portions and widths of the
string. As shown in Section 6.2, the composition of

97

 6. Information Assurance

two components results in a complexity that is no
larger than the sum of the complexities.

The network insecurity path analysis tool and
complexity-based vulnerability analysis
An experimental prototype tool has been developed
that combines the grid-based vulnerability analysis
technique with the complexity-based vulnerability
analysis method developed in this project. This sec-
tion discusses the enhanced tool shown in
Figure 127.

Every information system is assumed to take data
of some form as input, process the data, and return
data as output in some form. Essentially, every infor-
mation system can be defined as a mathematical
operation. Information systems developed by
humans today tend to be highly structured in order
to be tractable in their development and mainte-
nance. Generally, there are well-defined data flows
and processing functions within the information sys-
tem. The system is composed of a hierarchical com-
position of functional units. This is especially true in
legacy network systems where layered design is ubiq-
uitous. For these systems, one can imagine complex-
ity probes located at the input and output of every
functional unit in the system. This allows determina-
tion of the vulnerability of each process and data
stream at a very granular level. This provides a com-
plexity-based vulnerability map for the system. A
potential attacker would be unlikely to have such a
detailed understanding of a target information sys-
tem; an optimization to this technique is to limit
probe locations to only those locations likely to be
observable to an attacker. The vulnerability map is
used to determine insecurity flow through the sys-

tem. Complexity is viewed as resistance to attack.
Both a most likely path and a maximum flow algo-
rithm are applied in this experimental complexity-
based vulnerability analysis tool. The most likely
path is determined by finding the lowest complexity
path from a given attack point to a given target
point. The maximum flow algorithm assumes that
lower complexity paths have a greater capacity. The
question arises as to what “flow” means in terms of
complexity. Firstly, the entire foundation of com-
plexity-based vulnerability analysis rests upon the
likelihood, or probability, of attack being successful
upon the low complexity locations of an information
system as per Hypothesis 9.1. The complexity probe
values are displayed as links in the complexity tool
display shown in Figure 127. The values of the links
are 1/K and these values are normalized to 1.0 for
each node in order to obtain a probability of success-
ful attack upon each link. The maximum flow algo-
rithm provided by this tool shows the optimized
placement of resources by an attacker to maximize
the likelihood of a successful attack.

The distribution of insecurity information
The approach to measuring the complexity of a sys-
tem, as described throughout this document, results
in determining the ease with which a potential
attacker can understand the system. It does not
directly account for the fact that information about
the target system can be obtained by a potential
attacker in algorithmic form, that is, in the form of
an attack tool. Such a tool does not require the
attacker to understand its operation. The attack tool
is like an active packet, or a parasite that depends
upon its host for transportation. This is distinct from
a virus, whose primary function is replication and
transport. For example, an attacker may have little
understanding of a particular system, yet download
an attack tool that allows the attacker to perform a
successful attack. Thus, the distribution of attack
knowledge needs to be considered. Once an attack
tool is in the hands of an attacker, the apparent com-
plexity is greatly reduced. There is an interesting
feedback mechanism here; data that can reduce the
apparent complexity to a potential attacker needs to
be kept secure by the defender. Once obtained by an
attacker, a significant drop in apparent complexity
occurs, potentially leading to further significant
reduction in apparent complexity as more vulnera-
bility information is obtained and disseminated to
other attackers.

Figure 127. Prototype tool combining the grid-based vulnera-
bility analysis technique with the complexity-based vulnera-
bility analysis method.

98

6.3 Complexity-Based Vulnerability Analysis

One might view the evolution of complexity in
the following terms. An information system is built.
Initially, an attacker discovers its least complex com-
ponents. The attacker decides to automate his attack
(active) and/or publish the mechanism to accom-
plish the attack (passive). This information is dis-
seminated through the population. Meanwhile the
information system defenders, usually after consid-
erable delay, discover the attack mechanism and
patch the hole. The population of attackers, build-
ing upon their knowledge, exploits the next least
complex link from their view in the information.
The defenders eventually close this hole. The cycle
continues ad infinitum. The cycle of attack and
defense can be viewed through complexity as a
cycle, or evolution of complexity as shown in
Figure 128. Low complexity portions of a system will
eventually be learned and disseminated by an
attacker. To account for this dissemination of low
complexity information, defenders reinforce the low
complexity areas with more complexity. The results
of this project allow system developers to understand

not only where the vulnerable portions of the system
are located, but to engineer their systems in such a
manner as to control the cycle shown in Figure 128.
This process can be modeled as low complexity por-
tions of an information system that evolve in com-
plexity over time.

Figure 128. Cycle of attack and defense viewed through com-
plexity as a cycle, or evolution, of complexity.

99

 7. Self-Healing Information System

7. Self-Healing Information System
A Coherent, Self-Healing System
Self-Composition, Genetic Algorithms, and Kolmogorov
Complexity

 Fault tolerant and self-healing systems should have
the ability to self-compose solutions to faults. This
should be an inherent part of system operation,
rather than a structure imposed from “outside” the
system. Genetic Algorithms are on the path towards
self-composing solutions, however genetic algo-
rithms, as implemented today, require external con-
trol to manipulate the genetic material. In other
words, the genetic algorithm itself must be pro-
grammed into the system; if the genetic algorithm
code failed, then the self-healing capability would
fail. While this situation is not ideal, it is explored as
a possible step towards a truly self-healing system.
Active networking is a novel approach to network
architecture in which network nodes—switches,
routers, hubs, bridges, gateways etc. —perform cus-
tomized computation on packets flowing through
them. The network is called an “active network”
because new computations are injected into the
nodes dynamically, thereby altering the behavior of
the network. Packets in an active network can carry
fragments of program code in addition to data. Cus-
tomized computation is embedded within the
packet’s code, which is executed on the intermedi-
ate network nodes.

Many active network components and services
have been designed, implemented, and are under-
going experimentation. The ABone (Active Network
Backbone) implements a relatively large-scale (given
the novelty of the technology) active network
(O(100) nodes). However, the fundamental science
required to understand and take full advantage of
active networking is lagging behind the ability to
engineer and build such networks. In fact, the cur-
rent Internet, whose protocols were built upon the
ill-defined goal of simplicity are only slowly being
understood. An outcry from the Internet commu-
nity, with its carefully crafted, static protocol process-
ing, with massive documentation (O(4000) Request
for Comments) of passive (non-executable) packets
is that it is already “too” complex.

An adaptive fault tolerant system, no matter how
resilient, would unlikely receive acceptance by indus-
try or the community if it were considered “com-
plex” in the colloquial sense. How can such systems,
which require complexity to be adaptive, at the same
time appear simple to understand and manage. Are
active networks really more complex than the cur-
rent Internet? Are adaptive applications built upon
active networks any more or less complex than the
same applications built upon the legacy Internet?
Does a measure of complexity exist that would allow
an objective comparison to be made? What are the
benefits of an active network with respect to passive
networks? While these are extremely difficult ques-
tions to answer, this report attempts to lay the
groundwork for answering these questions by pro-
posing a complexity measure, Kolmogorov Com-
plexity, and proposing an adaptation mechanism,
Genetic Programming, based upon an analogy with
biological systems.

Kolmogorov Complexity was applied as a measure
of potential algorithmic information content for use
in prediction and control of an active network [185].
In the remainder of this paper, the term complexity
will be used to indicate a particular form of com-
plexity known as Kolmogorov Complexity. Kolmog-
orov Complexity is a measure of the length of the
smallest program, such that, when executed upon a
Universal Turing Machine, it generates a particular
string of bits x. The length of such a smallest pro-
gram K(x) is the complexity of the bit-string, x. It
should be noted that research has been performed
in the use of genetic programming to evolve the
smallest program for a given bit-string, and thus esti-
mate K(x). Complexity was applied to optimize the
combined use of communication and computation
within an active network; to determine the optimal
amount of code versus data [185]. It was shown that
if the Kolmogorov Complexity of the information
related to the prediction of the future state of the
network is estimated to be high, then the ability to
develop code, representing the non-random, or

100

algorithmic portion, of that information is low. This
results in a low potential benefit for algorithmic cod-
ing of the information; the benefit of having code
within an active packet would appear to be minimal
in such cases. Conversely, if the complexity estimate
is low, then there is great potential benefit in repre-
senting information in algorithmic form within an
active packet. It was suggested that if the algorithmic
portion of information changes often and impacts
the operation of network devices then active net-
working provides the best framework for implement-
ing solutions[185]. This is precisely the case in
genetically programmed network services, a new
class of services that are not pre-defined but those
that evolve themselves in the network in response to
the state of the network. In this report, we will
restrict this class to those services that are program-
matic solutions for perceived faults that occur in a
network. Further research is required to generalize
this class to include other types of network services.

Frameworks for protocol and service composition
have been developed for active networks, one of
which is well described [186]. Thoughts on the
requirements for protocol and service composition
are also discussed in [187]. However, the work done
to date is lacking in that it does not address how
active code will be generated rapidly enough to
make dynamic injection of the code a significant fac-
tor. The argument against active and programmable
networks is that, given enough time, memory, and
processing power, legacy systems could eventually
contain all the functionality that active networks
could have injected. To do this, legacy developers
would have to know {\em a priori} all possible func-
tionality that would be required in the network.
However, this report demonstrates that it is possible
for the network to generate code rapidly and in a
manner that can never be known {\em a priori} for
every possible condition. The inspiration for a
genetic algorithm based approach to solution com-
position comes from nature in the form of the dock-
ing problem in molecular biology [188]. Solutions
that efficiently match a particular fault should be
able to “dock” with the fault. Prediction for success-
ful docking in biology can be attempted by search-
ing for minimal energy or minimal geometric
construction combinations. Here we consider a
genetic algorithm used to generate a solution for the
self-composition of solutions to mitigate network
faults. One goal of the experiment discussed later in
this report is to study the relationship between com-

plexity and solution composition. In particular, it
has been hypothesized that the complexity of the
fault and potential solution will decrease as the opti-
mal solution is composed. Specific examples of
faults that could be simulated are:

• Network mis-configuration
• Bandwidth and Processor mis-allocation
• Faults caused by Distributed Denial of Service

and virus attacks
• Poor Traffic shaping
• Routing problems
• Non-optimal fused data within the network
• Poor link quality in wireless and mobile

environments
• Mal-composed protocol framework models in

the network
• Poorly tuned components of network services

A simple fault, namely, mis-allocation of band-
width and processing capability resulting in packet
jitter, has been chosen as a working example. A fit-
ness function defines a metric for “goodness” of a
population. In this case, “goodness” is the reduction
in the variance of packet arrival times. The fault is
represented by the difference between the actual sys-
tem and a minimum required fitness. Genetic mate-
rial will evolve to minimize the effect of the fault.
The complexity of the combined fault-solution pair
should be at a minimum when the fitness is optimal.
We will borrow a term from molecular biology and
call a perfectly matched fault and solution a success-
ful “docking”.

COMPLEXITY AND EVOLUTIONARY CONTROL
Complexity and evolution are intimately linked. Kol-
mogorov Complexity (K(x)) is the optimal compres-
sion of string x. This incomputable, yet fundamental
property of information has vast implications in a
wide range of applications including system manage-
ment and optimization[192] [193], security
[194],[195], and Bioinformatics. Active networks
[196] form an ideal environment in which to study
the effects of trade-offs in algorithmic and static
information representation because an active packet
is concerned with the efficient transport of both
code and data. As noted inFigure 129, there is a
striking similarity between an active packet and
DNA. Both carry information having algorithmic
and non-algorithmic portions. The algorithmic por-
tion of DNA has transcription control elements as
well as the codons [197]. The active packet has con-
trol code and may contain data as well.

101

 7. Self-Healing Information System

Kolmogorov Complexity and Genetic Program-
ming have complementary roles. Genetic Program-
ming has been used to estimate Kolmogorov
Complexity [198], [199]. Genetic Programming
benefits from Kolmogorov Complexity as a measure
and means of controlling not only the complexity,
but the size and generality of the result [200]. One
of the most obvious uses for complexity in network-
ing is Programmatic Compression [201]. In this
report, the foundation is developed for the use of
complexity to enable the network to self-heal. In the
next section, a description of the Minimum Descrip-
tion Length algorithm and its role in Active Net-
works is explained.

THE APPLICATION OF COMPLEXITY IN A
COMMUNICATIONS NETWORK
The goal of the system that has been implemented is
to utilize the benefit of an active network to auto-
matically generate solutions that bring the network
back into line with a healthy model of the system.
The fitness function is used to describe the desired
outcome. The concept of molecular docking, men-
tioned previously, requires a more precise measure-
ment of the degree of “fit” in the docking of a fault
and solution. In this project, we are exploring the
use of Kolmogorov Complexity, estimated via the
Minimum Description Length algorithm, as the
means to measure the fit between the fault and the
desired state. The next paragraph describes the Min-
imum Description Length complexity estimator and
its relationship to active networking.

A question active network application developers
must answer is: “How can I best leverage the capabil-
ities that active networks have to offer?” Because the

word “active” in active networks refers to the ability
to dynamically move code and modify execution of
components deep within the network, this typically
leads to another question: “What is the optimal pro-
portion of content for an active application that
should be code versus data?” A method for obtain-
ing the answer to this question comes from direct
application of Minimum Description Length (MDL)
[202] to an active packet. Let Dx be a binary string
representing x. Let Hx be a hypothesis or model, in
algorithmic form, that attempts to explain how x is
formed. Later in this report, we view as a predic-
tor of x in the analysis of Active Virtual Network
Management Prediction. For now let us focus on
developing a measure of the complexity of x. MDL
states that the sum of the length of the shortest
encoding of a hypothesis of two components will
estimate the Kolmogorov Complexity. The two com-
ponents are the length of a model generating string
x and the length of the shortest encoding of x using
the hypothesis. This can be represented mathemati-
cally as . Note that error in
the hypothesis or model must be compensated
within the encoding. A small hypothesis with a large
amount of error does not yield the smallest encod-
ing, nor does an excessively large hypothesis with lit-
tle or with no error. A method for determining
can be viewed as separating randomness from non-
randomness in x by “squeezing out” non-random-
ness, which is computable, and representing the
non-randomness algorithmically. The random part
of the string, that is, the part remaining after all pat-
tern has been removed, represents pure random-
ness, unpredictability, or simply, error. Thus, the
goal is to minimize where

is the length of string x, is the estimated
hypothesis used to encode the string and E is
the error in the hypothesis. The more accurately the
hypothesis describes string x and the shorter the
hypothesis, the shorter the encoding of the string.
Choosing an optimal proportion of code and data
minimizes the packet length.

The proposed hypothesis is that the Kolmogorov
Complexity of a combined fault and solution
description is minimized when the optimal solution
to mitigate the fault is composed. A nearly trivial
example can be seen with reverse code. Assume that
fault data, F exists. Assume that the fault does not
erase data but merely transforms it. Define the algo-
rithmic description of the fault data . The
reverse code for will be labeled . Assume

Figure 129. DNA and an Active Packet.

Hx

K x() K Hx() K Dx Hx()+=

K x()

l He() l Dx He() l E()++
l x() He

Dx()

PF()
PF() RPF()

102

• Nucleotide Bases: A, C, G, U

• Triplets (Codons) result in translation to Amino Acids within the Ribosome

• Chromosome Structure: List of connected unit pairs. In eucaroytes these reside
in the nucleus: ((Delay, Delay)(Jom, Split),)

Transcript!
Control

Active Packet

^^^ % Algorithm

' DNA Strand and Active Packet operate in the same manner: both carry control
and data

• Duahsm in genetic world (gene as information and algorithmic code) first noted
by von Neumann

 and are minimal length programs. Then,
, where is the empty set. is the

data generated by . Since the fault does not
erase any data, the process is reversible [191] and
therefore, . The equivalence in
complexity of and follows because there is no
loss or gain of complexity when the system is
restored to a prior state using the anti-fault process

; there is no work performed. The algorithmi-
cally reversed fault will be referred to as an anti-fault
in this report.

The descriptive complexity of the fault and the
solution should ultimately be as low as possible and
the Minimum Descriptive Length algorithm can be
used, among other complexity estimators, as a tech-
nique to guide solution composition. In fact, this is
the case with reversible code. Complexity is impor-
tant information because it is an indicator of both
the type of fault and level of difficulty in correcting
the fault and the severity of the fault; fault severity is
important in triage operations to optimize system
health. Second, a more compact algorithmic repre-
sentation of a fault will travel faster and more rapidly
through the network; it is an efficient format for
alerting system management and in triggering auto-
mated solutions. Third, it can be relatively easy to
reverse the code of an algorithm, possibly generat-
ing an anti-fault, or solution to a problem in certain
cases. Reversible code has been presented in previ-
ous work as a mechanism for generating anti-mes-
sages in Time Warp simulation [203].

Fault tolerant and self-healing systems should
have the ability to self-compose solutions to faults.
Ideally, composition should be an inherent part of
system operation, rather than a structure imposed
from “outside” the system. Genetic Algorithms are
on the path towards self-composing solutions, how-
ever genetic algorithms, as implemented today,
require external control to manipulate the genetic
material. In other words, the genetic algorithm itself
must be programmed into the system; if the genetic
algorithm code failed, then the self-healing capabil-
ity would fail. While this situation is not ideal, it is
explored as a possible step towards a truly self-heal-
ing system.

One of the contributions of this report is the
study of complexity in genetic algorithms with the
goal of eventually designing self-composing solu-

tions. Genetic algorithms are widely known for their
ability to find optimal solutions, avoiding local
extremes, by using evolutionary-like processes
dependent upon “random” mutation. Kolmogorov
Complexity describes the randomness of informa-
tion. The Kolmogorov Complexity of the genetic
material during the evolution of a genetic algorithm
can be estimated and yields interesting clues about
the underlying physics of the information during its
evolution towards a fitness function. It is our hypoth-
esis that, as the evolution proceeds and the fitness
level of the genetic material rises, the complexity
decreases. This result yields an interesting insight
that supports the hypothesis that “solutions” that
self-compose to mitigate a fault will tend to decrease
in complexity.

THE GENETIC ALGORITHM
The goal of this study is to examine how complexity,
specifically an estimate of Kolmogorov Complexity,
relates to the evolution of a self-composing solution.
We consider a genetic algorithm to be an approxi-
mation of a self-composing system. Details on the
operation of genetic algorithms can be found in
[204] [205] [206]. This paper assumes a basic
understanding of genetic algorithm operation and
provides only a brief overview. In this experiment a
pre-existing Mathematica genetic algorithm pack-
age3 is used. The decision to use Mathematica was
based upon its combination of symbolic and arith-
metic capabilities and because many of our research
utilities, including Kolmogorov estimation func-
tions are implemented in Mathematica.

The genetic algorithm package assumes a popula-
tion of binary strings of preset size and whose values,
when converted to a float type, are between zero and
one. Similarly, the fitness function is assumed to
accept and return values in the range from zero to
one. Fitness values closer to one are assumed indi-
cate more highly optimized results. A genetic algo-
rithm consists essentially of three parts: selection,
crossover, and mutation. In selection, each string is
selected with a probability proportional to its fitness
value. In crossover, a pair of selected strings is deter-
mined, a position along the string is chosen at ran-
dom, and the right and left parts of each string are
swapped. In mutation, each gene is changed at ran-
dom with a low probability, in this case a probability

PF() RPF()
RPF PF()() φ= φ RF

RPF()

K RF() K F() 0=–
RF F

RPF

3. Written by Mats G. Bengtsson National Defense Research Establishment Box 1165, S-581 11 Linkoping Sweden email: mat-
ben@lin.foa.se

103

 7. Self-Healing Information System

of 0.002 was chosen based upon repeated experi-
mentation. Each individual is coded as a binary
string of length10 bits. This length provides the size
necessary to achieve numerical precision while
being small enough to allow a large population size
and without excessive overhead. The problem is lim-
ited to one-dimension with value x, which represents
the real value of the bits in string x, that varies from
zero to one. The first step is to create a random pop-
ulation. The population is defined on the real axis
from zero to one. The random values are repre-
sented in the form of binary strings. Next a fitness
function is defined. It is defined in the interval zero
to one. The fitness function in this example is
defined as . Thus, binary representa-
tions of values that are odd multiples of 0.5 will have
maximal fitness.

Kolmogorov Complexity
This section discusses a general approach for self-
composing solutions using lessons learned from the
previous section. The approach can be described as
the automated generation of a solution hypothesis

, that is, the reverse of the algorithmic
difference between the faulty and correct algorith-
mic representation of behavior by controlled means.
As deviates from , complexity or heat as pre-
sented here, is generated. In [192] the relationship
between fault and energy is explored and simulated
(see [195], [194], [207] for recent work on com-
plexity and energy and Information Assurance). The
motivation for that experiment came from the rela-
tionship between Kolmogorov Complexity and
entropy. The definition and application of Kolmog-
orov Complexity to vulnerability analysis identified
how Kolmogorov Complexity can be used to deter-
mine vulnerabilities in a system as areas of low com-
plexity. An underlying hypothesis of our work is that
computation and communication are fundamentally
related through complexity theory, and, thus, band-
width and processing utilized in denial of service are
fundamentally interrelated. Low complexity data or
code consuming large amounts of bandwidth or pro-
cessing indicates the likelihood of an attack. A
model of complexity evolution within a closed sys-
tem is described in reference [194]. That reference
developed an abstract model with which to study
complexity, specifically Kolmogorov Complexity, of
information within an information system. That
model explores , a measurement of length in
bytes, and , a measure of the maximum

increase in complexity of the system due to code
entering a system such as code carried by active
packets. The rate of complexity increase in terms of
algorithmic active packet complexity in units of

 within the closed system was measured. Sig-
nificant changes in system complexity indicate the
presence of faults. Reference [208] reported the
results of Kolmogorov Complexity probes that
detect Distributed Denial of Service attacks.

An active network environment is used to empha-
size that information assurance laws must be able to
deal with many alternative and dynamically chang-
ing representations of information. With regard to
active packets and information theory, passive data is
simple Shannon compressed data, and active pack-
ets are a combination of data and program code
whose efficiency can be estimated by means of Kol-
mogorov Complexity [209]. The active network Kol-
mogorov Complexity estimator is currently
implemented with a variety of compression estima-
tors ranging from simple empirical entropy to more
complex algorithms beyond the scope of this confer-
ence. The probe returns an estimate of the smallest
compressed size of a string. The simplest estimator,
trading accuracy for speed and low overhead, is
based upon computing the entropy of the weight of
ones in a string. Specifically it is defined in
Equation 19where is the number of 1 bits and

 is the number of 0 bits in the string whose com-
plexity is to be determined. Entropy is defined in
Equation 20. See [209] for other measures of empir-
ical entropy and their relationship to Kolmogorov
Complexity. The expected complexity is asymptoti-
cally related to entropy as shown in Equation 21.
Observe an input sequence at the bit-level and con-
catenate with an output sequence at the bit-level.
This input/output concatenation is observed for
either the entire system or for components of the
system. Low complexity input/output observations
quantify the ease of understanding by a potential
attacker. Previous work has demonstrated the use of
Kolmogorov Complexity for Distributed Denial of
Service (DDoS) attack detection [208].

fx πx()sin=

Hs R He Hf–()=

Hf He

K x()
K x() sÚ

K x() sÚ

x#1
x#0

K̂ x() l x()H≈() x#1
x#1 x#0+
------------------------- 
 

2
l x()()log+(19)

H p() p
2

p 1.0 p–()
2

p 1.0 p–()–log–log–=(20)

H X() P X x=()K x()
l x() n=
∑≈(21)

104

Because Kolmogorov Complexity was originally
derived for the study of randomness, it is interesting
to note that randomness plays a significant role in
the operation of the genetic algorithm itself. The
initial genetic material should be generated ran-
domly. Selection of genes for mutation and cross-
over points should also be done randomly. Finally,
selection of gene pairs is done randomly, but in pro-
portion to their fitness value.

Given the randomly generated nature of the ini-
tial genetic material, one would expect the complex-
ity of the genetic material to decrease as the genetic
algorithm evolves. This is clearly the case in the ini-
tial steep downward spike shown in Figure 130. As

the algorithm continues to evolve and the fitness of
the genetic material improves, one would expect
structure and order to appear. As mentioned earlier,
in this specific case, the algorithm encourages the
growth of binary strings that represent odd multi-
ples of 0.5.

Figure 131 shows the complexity, estimated as the

compressed size, of the genetic material as a func-
tion of evolutionary steps. Compare with Figure 132,

which shows the sum of the fitness values as a func-
tion of evolutionary steps. The complexity decreases
as the cumulative fitness function increases, then
rises again while evolution continues however, the
fitness function does not significantly increase. The
complexity measure seems to indicate that the first
optimal genetic composition was found near evolu-
tion step 50. As the genetic algorithm continued
beyond that point, the genetic material became
more complex again with no corresponding benefit
in fitness. This result was unanticipated, but is plausi-
ble as new solutions evolve, with varying complexity,
attempting to maximize fitness.

The cumulative fitness function results (multi-
plied by 10 to shift upward for easier comparison
with the estimated complexity) are shown in
Figure 132. Note that the points of high complexity

always coincide with points of low cumulative fitness.
Points of relatively low complexity correspond to
high cumulative fitness. Arrows point to the extrema
in the cumulative fitness function and estimated
complexity that can be seen to align with extrema in
the fitness function. In particular, minima in esti-
mated complexity occur simultaneously with oppos-
ing maxima in the fitness. This indicates an inverse
relationship between complexity and cumulative fit-
ness extreme points.

Consider the complexity of the fitness function
itself. The fitness function is an algorithmic repre-
sentation of the fitness of a chromosome. The range
resulting in maxima generated from the fitness func-
tion forms a string that represents the target com-
plexity. In this particular genetic algorithm example,
a solution of 0.5 for all 128 members of the popula-
tion would yield an estimated complexity of 611.3.
This low a level of complexity was never reached for
two reasons: there are multiple optimal solutions,

Figure 130. Complexity of Genetic versus Evolutionary Time
Steps with Population 128.

Figure 131. Cumulative Fitness Function of Genetic Material
with Population 128.

Figure 132. Complexity and Fitness Comparison.

105

^ N^ fmf I «lii A *J p ' ~ f T

liA if "W
/

u F

jf
'* ' V

■JL

^r
^#*^^«i«^

iWi*(kw:<'i4^;

^r^

^l

S^r.

V^/
iifi]ii;<Vii.^^ iC':^

M ■f4f
/ in r^.

CufMUa«lv< rieni

ijiij

EvelMiin 3c*p

 7. Self-Healing Information System

namely odd multiples of 0.5, and the algorithm
never exactly achieved odd multiples of 0.5, but
rather approximately close values. The remaining
sections discuss how these concepts have been
implemented to construct a fault tolerant network.

TOWARDS A SELF-EVOLVING NETWORK
SYSTEM
Other papers from the Imperishable Networks
Project have developed complexity-based techniques
for fault detection and identification as discussed in
[210] and [193]. The focus of this report is on
progress towards self-composition of solutions
assuming that other techniques, particularly com-
plexity-based techniques, have identified faults. A
problem with the genetic algorithm-based approach
as previously described for use as a self-evolving sys-
tem is that control is generally external to the
genetic material and the genetic material is gener-
ally considered to be passive data. Instead the
genetic material should be capable of being algorith-
mic information, that is, program code or objects. In
addition, each chromosome, as an object, should
contain the necessary capability to run the genetic
algorithm. This would allow for a highly distributed
and robust genetic algorithm capable of fault mitiga-
tion where the fault is represented through the fit-
ness function.

A criticism of this approach might be that a genet-
ically-engineered protocol stack will create a com-
plex framework that will be difficult to understand
and maintain. However, our approach is to compose
the framework from simple components. Each of
these components will be individually verifiable with
respect to its properties and actions. As the compo-
nents are arbitrarily composed to form a protocol
stack, some protocol stacks may be generated that
violate the principles of safety, consistency and cor-
rectness. One way to approach this is to define a fit-
ness function that verifies the suitability of the stack
with respect to the properties desired. Any mis-con-
figured protocol stacks are automatically eliminated
from consideration if the fitness function is carefully
defined to check for the above-mentioned proper-
ties. However, this might make the definition of the
fitness function itself cumbersome as every possible
stack composition property will have to known a pri-
ori and an appropriate fitness “filter” defined. This
will lead to a loss of elegance in the fitness function
definition and consequently poor maintainability. A
better approach would be to define syntactic and

certain semantic composition properties in the indi-
vidual components themselves, possibly in the form
of logical expressions. These expressions will
enforce constraints on the behavior of the compo-
nents, which can be verified at run-time. The run-
time system will embed a theorem-prover, which can
be either a full-blown prover like PVS, NuPrl or SPIN
or a reduced version of one, to systematically verify
properties during composition itself. This reduces
the burden on the programmer to define a proper
fitness function that can catch and eliminate all
types of composition errors.

Approach
Genetic material begins in a random state (M), and
converges to the complexity of the optimal value
produced by the fitness function. This enables true
solution composition from a wide range of possible
solutions. One problem with this approach is the
time required evolving towards a feasible solution.
Another problem is the fitness function itself has to
be self-generated in some manner. Using Active
function exists in the form of where is the
estimatedVirtual Network Management Prediction
[196], the fitness correct operation hypothesis of the
system as described in [185].

In summary, the experiment in this section has
shown a relationship among fitness, complexity, and
the evolution of genetic material. Complexity esti-
mation probes have been embedded in the General
Electric Global Research Center Active Network test-
bed for use in security experimentation. The next
section explains the framework developed to utilize
the same complexity probes described in [208] to
control the evolution of a genetic program within
the active network. This makes the network highly
resilient to faults by enabling the capability to adapt
in a wide variety of ways.

GENETIC NETWORK PROGRAMMING
ARCHITECTURE
The Magician Active Network [196] overlay network
is used to test the feasibility of the genetically pro-
grammed network service concept. An active packet
representing the nucleus (assuming network nodes
are like eucaryotes- cells containing nuclei) is
injected into all the `network nodes. The nucleus
contains a population of chromosomes-- strings of
functional units. Operation of Genetic Network Pro-
gramming begins with the injection of basic building
blocks, known as functional units, into the network

He He

106

as shown in Figure 133. Cur rently, this “genetic

material” is flooded into each active node. However,
the material will remain inactive in each active node
until a fitness function is injected into the network.
Receipt of a fitness function will cause evolution to
proceed.

Functional units are very small pieces of code
blocks that perform simple, well-defined operations
upon an active packet. Examples of functional units
are Delay, Split, Join, Clone, and Forward. There is also
a Null functional unit whose use is explained later.
Chromosomes are strings of functional units as
shown in Figure 134. Once a chromosome is assem-
bled, the codons can be translated into Amino Acids
at the Ribosomes. In other words, the string of func-
tional units will operate upon active packets from
other applications (or other functional units) that
traverse through the node. The chromosome is rep-
resented in the code in a form similar to a Lisp sym-
bolic expression, for example: ((Null Join Split) (Delay
Split Join Delay)).

Mutation and recombination occur among a pop-
ulation of genes. Mutation is a probabilistic change
of a functional unit to another functional unit.
Recombination is the exchange of chromosome sec-
tions from two different chromosomes. In
Figure 135, a close-up of a single node can be seen
containing a very short chromosome strand.

A single incoming traffic stream, as shown in
Figure 136 entering the center node, is split into
multiple streams. Each stream is processed by a dif-
ferent chromosome. Note that currently in our
implementation, the full traffic stream is split along

each chromosome, however, it is hypothesized that
traffic sampling could be used to reduce the over-
head in creating the multiple streams.

Figure 133. Injection of the Nucleus. Figure 134. Functional Units, Evolution, and Fitness.

Figure 135. Single Node Genetic Programming Architecture.

Figure 136. Breeding Traffic Streams.

107

Nucleus Injected at Startup

Active EE

Architecture
selfcomp.fti

selfcomp.apps elfcomp.apps

/ (J^^r ^ (Forward)-.

telay) ^^-^^seUcomp.units

(Encrypt, ^
Join

jacob(^psc.u:algary.c3-M3if 1998/Febmaryii

Single Node Active Evolutionary
Control Architecture

in Enviionmeiit /x.

>mp.q)ps
■I Packet r

Traffic and Evolution

(functional units^ functional units2 functional units,)

(nmctioi al nnltSj)

A traffic sample is run through several
chromosomes to determine the most fit

 7. Self-Healing Information System

As shown in Figure 137, fitness functions can be
designed to measure quality at different layers of the
traditional protocol stack. In this particular case, fit-
ness measures are shown at the Transport, Network,
and Link Layers. As a particular example, jitter con-
trol might have a fitness function that minimized
per frame variance at the Link Layer. The Network
Layer would attempt to maximize packet arrives at
the destination in the reasonable time period, that is
perform the routing function. The Transport Layer
would have a fitness function that attempts to mini-
mize end-to-end packet variance. The key is that
each of these fitness functions need to work together
towards reaching the stated goal in a reasonable
manner. More will be said about the fitness function
later.

In Figure 138, recombination can occur both within
a node or between two nodes. In addition, as shown
in Figure 139, changing the route of a packet also
effectively accomplishes a recombination because
the packet processing will be dependent upon the
genetic material at each node traversed.

A key component of the evolutionary process is
the fitness function. Fitness functions are ``user''
defined and injected into the network to control the
evolution of the genetic population. For example, in
our initial tests, minimizing variance in transmission
time was used as a simple fitness function. However,
initial experiments quickly demonstrated that the
design of the fitness function is the most critical ele-
ment. It reminds one of the saying, ``Be careful of
what you pray for..., because you might get it.'' Often
the fitness was achieved, but in ways that were unex-
pected and sometimes detrimental to the intended

operation of the network. As a trivial example, the
variance can be minimized by slowing the traffic to a
near halt. Thus, a low latency term had to be added
to the jitter control fitness function.

Genetically programmed active network jitter
control
As a feasibility test, an adaptive jitter control mecha-
nism was developed on a fixed, wired active commu-
nication network having the topology shown in
Figure 139. The genetic algorithm was implemented
as an active application in the Magician Active Net-
work Execution Environment [196]. Packets origi-
nate from the left-most node in Figure 139and are
destined for the right-most node in the figure. The
dominant contributors to packet link transit time
variability given the topology shown in Figure 139
are the fact that the active network is an overlay net-

Figure 137. Multiple Levels of Fitness.

Figure 138. Recombination Levels.

Figure 139. Chromosomes and Routing.

108

Evolution Hierarchies

(functional units^ functional units2 functional units,)

(runctioiljal unitsj Inter-node

combination

I units^)

Intra-node
Recombination

Genes withm nodes
mutate

(functional unitS4)

Recombination can
occur between

and recombinate imer-PaihRecombination? adjacent nodes

Multi-Level Fitness Functions

(functional units, functional unitSj functional units,)

(functjoi

(functior al unitS|)

±J>

(functioi al units^)

titMMs Jitter Control Example
function

(functional unitS4)

Fitness per node

and end-to-end
Transport Layer Fitness

^^^ Network Layer Fitness
Link Layer Fitness

Effective Chromosome Based Upon Route

(functional unitSj functional units^ functional unitSj)

(functioi al unitS3)

(functional units^ functional units^ functional units^)

work that has unspecified lower -layer traffic and that
packets are loaded and executed within a Java Vir-
tual Machine residing in each node and are subject
to Java garbage collection which runs at unspecified
times.
The fitness function on all nodes returns a greater
fitness as the result of a Simple Network Manage-
ment Protocol query of an Object Identifier that
measures packet link transfer time variance on the
destination node is minimized. As previously men-
tioned, the fitness function is itself an active packet
that consists of an objective function. The function
is highly general and can be comprised of any math-
ematical function of accessible metrics.
Figures 140 through Figure 143 show packet link
transit variance through three of the chromosomes
on the destination node and Figure 143 shows
packet link transit variance without any jitter control
mechanism at the destination node. Initial observa-
tion of the graphs shows that, overall, particularly as
time progressed, the Chromosomes significantly
reduced packet transit variance.

Another observation of the experimental data is that
the genetically programmed transit variance was ini-
tially worse than transit variance without any control
mechanism. The reason for this is that the chromo-
somes begin operation with a random set of func-
tional units and require time to converge to an
optimal value.

Jitter control: a simple test case
While a priori techniques have been developed for
jitter control in legacy networks, jitter control forms
a simple, easily measured and controlled applica-
tion for the network genetic programming tech-
nique. The functional units injected into the
network should allow evolution of a variety of inter-
esting solutions to reduce variance, including add-
ing delays, forward along different paths, or perhaps
new ideas that have not been thought of yet.

Figure 140. Packet Link Transit Variance (milliseconds2) on
Destination Node Through Chromosome One.

Figure 143. Packet Link Transit Variance (milliseconds2) on
Destination Node Without Jitter Control.

Figure 141. Packet Link Transit Variance (milliseconds2) on
Destination Node Through Chromosome Two.

Figure 142. Packet Link Transit Variance (milliseconds2) on
Destination Node Through Chromosome Three.

109

chromosome 2 Variance Performance

100000 200000 300000 400000 500000 600000
Wallclock (mS)

Chromosome 3 Variance pg^f„^„3„^g

Chromosome 1 Variance Performance

1.4x10

1.2x10''

1x10'

8xl0'

6xl0'

4xl0'

r

d 1 ii h"

,! - I 1 /'

"- 11 I
;1j 1 J
. E ■-"

Wallclock (mS)

u

Q^M
■^

'\, 13-
=1 Ballclock (mS)

100000 200000 300000 400000 500000 600000

100000 200000 300000 400000 500000 600000

Link Variance (mS) performance

r "^

UUJ:! .ni J- TI Wallclock (mS)

100000 200000 300000 400000 500000 600000

Conclusions
The most significant result from this project has
been experimental validation that complexity plays a
critical role in information assurance and can be
broadly applied as the basis for security analysis and
fault tolerant network design. Complexity Theory is
a large and rapidly evolving science (Figure 1). As
progress is made in various topics of Complexity
Theory, the individual topics will help to re-enforce
each other. For example, Vladimir Gudkov’s results
in the minimum dimensions required to character-
ize information flow could help develop a better
Kolmogorov Complexity estimator. Our goal has
been to reduce the requirement and dependence
upon detailed a priori information about known
attacks and detect novel attacks by computing vul-
nerability and detecting anomalous behavior based
upon an inherent, fundamental property of infor-
mation itself, namely, its complexity and sophistica-
tion. Results of complexity measures applied to
network protocols, processes, and information have
been presented and related to Information Assur-
ance and network fault tolerance.

Accurate estimation of Kolmogorov Complexity is
key to its usefulness in identifying correlation
between attack flows. We have made progress in
leveraging and developing in-line communication
network complexity estimators and we are investigat-
ing and benchmarking more estimators for K(x).
Estimates of Kolmogorov Complexity provide an
objective parameter with which to provide informa-
tion assurance through anomaly detection and
objective model development. The capability of this
metric is limited in part by the accuracy of its estima-
tion, which must be traded against computational

expense. The Optimal Symbol Compression Ratio
complexity and sophistication algorithm may pro-
vide additional capability to discern anomalous
behavior in information systems. Further research is
needed to develop strategies for cost-effective use of
this paradigm across entire systems.

With respect to the DDoS detection technique, its
performance needs to be compared to more intelli-
gent detection algorithms that are currently in use.
In particular, its performance has to be measured in
terms of resource tradeoffs, detection and false-
alarm probability and response time. For example,
the current technique performs its evaluation on
the entire content of the packet. Anecdotal evidence
has shown that performance degrades if the payload
of the packet is encrypted and the size of the pay-
load dominates the size of the packet. Techniques
that adapt to payload size have been formulated and
tested.

The next challenge is continuing the develop-
ment of the K-Map (Kolmogorov Complexity Map of
a system) and applying theory using Kolmogorov
Complexity. For example, one significant applica-
tion is identifying and controlling faults and DDoS
attacks and tracing attacks back to the attacker. The
fundamental hypothesis is that the attacker can be
traced using a complexity-based approach because
attacks must have a common pattern because they
originate from a common source. We expect that
advances in Complexity Theory, combined with
reflective capability enabled by Active Networking,
will enable significant advances in network fault tol-
erance and adaptation.

110

References
[1] Combinatorial Foundations of Information Theory

and the Calculus of Probabilities Russian Math.
Surveys, 38(4): 29-40, 1983.

[2] Islands of Near-Perfect Self-Prediction by Stephen F.
Bush, Proceedings of VWsim'00: Virtual Worlds
and Simulation Conference, WMC'00: 2000 SCS
Western Multi-Conference, San Diego, SCS
(2000) International Conference on Virtual
Worlds and Simulation (VWSIM 2000), January
2000.

[3] Bush, Stephen F. and Kulkarni, Amit B.,
Active Networks and Active Virtual Network Manage-
ment Prediction: A Proactive Management Frame-
work. ISBN 0-306-46560-4, Kluwer
Academic/Plenum Publishers. Spring
2001.

[4] Bush, Stephen F. and Kulkarni, Amit B. (GE),
Galtier, Virginie and Carlinet, Yannick and
Mills, Kevin L. (NIST), Ricciulli, Livio (Met-
anetworks). Predicting and Controlling Resource
Usage in an Active Network. DARPA Active Net-
works PI Meeting, December 6-9, 2000, Atlanta,
GA.

[5] Bush, Stephen, F. and Evans, Kolmogorov Com-
plexity for Information Assurance, GE Corporate
Research and Development Technical Report
2001CRD148.

[6] Evans, Scott, Bush, Stephen F., and Hershey,
John, Information Assurance through Kolmogorov
Complexity, DARPA Information Survivability
Conference and Exposition II (DISCEX-II
2001) 12-14 June 2001, Anaheim, California.

[7] Evans, Scott and Bush, Stephen. F, Symbol Com-
pression Ratio for String Compression and Estimation
of Kolmogorov Complexity, Submitted to 2002
IEEE International Symposium on Information
Theory.

[8] Kulkarni, Amit B. and Bush, Stephen F., Active
Network Management and Kolmogorov Complexity,
OpenArch 2001, Anchorage Alaska, April 27-28,
2001.

[9] Kulkarni, Amit B. and Bush, Stephen F., Active
Network. Management, Kolmogorov Complexity, and
Streptichrons by GE CRD Technical Report
2000CRD107, December 2000.

[10]Li, Ming and Vitányi, Paul. An Introduction to
Kolmogorov Complexity and Its Applications, ISBN
0-387-94868-6, Springer, NY 1997.

[11]Liu, George Y. The Effectiveness of a Full-Mobility
Architecture for Wireless Mobile Computing and Per-
sonal Communications. Ph.D. Thesis. Royal Insti-
tute of Technology, Stockholm, Sweden. March
1996.

[12]Virginie Galtier and Kevin L. Mills (NIST) and
Yannick Carlinet and Stephen F. Bush and Amit
Kulkarni. Predicting Resource Demand in Heteroge-
neous Active Networks, MILCOM 2001, McLean,
VA, October 28-31.

[13]Virginie Galtier and Kevin L. Mills (NIST) and
Yannick Carlinet and Stephen F. Bush and Amit
Kulkarni. Prediction and Controlling Resource
Usage in a Heterogeneous Active Network, Third
Annual International Workshop on Active Mid-
dleware Services 2001, San Francisco, CA,
August 6, 2001.

[14]Wallace, C. S. and Dowe, D. L., Minimum Mes-
sage Length and Kolmogorov Complexity, The Com-
puter Journal, Vol. 42, No 4. 1999.

[15]Bennett, C. Thermodynamics of Computation.
International Journal of Physics, 21, 905-940.

[16]Bush, Stephen F. and Kulkarni, Amit B., Active
Networks and Active Virtual Network Management
Prediction: A Proactive Management Framework.
ISBN 0-306-46560-4, Kluwer Academic/Plenum
Publishers. Spring 2001.

[17]Bush, Stephen F. and Kulkarni, Amit B. (GE),
Galtier, Virginie and Carlinet, Yannick and
Mills, Kevin L. (NIST), Ricciulli, Livio (Met-
anetworks). Predicting and Controlling Resource
Usage in an Active Network. DARPA Active Net-
works PI Meeting, December 6-9, 2000, Atlanta,
GA.

[18]Bush, Stephen, F. and Evans, Kolmogorov Com-
plexity for Information Assurance, GE Corporate
Research and Development Technical Report
2001CRD148.

[19]Bush, Stephen, F. and Kulkarni, Amit B., and
Evans, Scott C. Active Virtual Network Manage-
ment Prediction Enhancement via Kolmogorov Com-
plexity Estimation, Submitted to the 2002 IEEE
Open Architecture Workshop. June 28-29, 2002,
Hilton New York, New York City.

[20]Carothers, C. D. and Perumalla, K. S. and
Fujimoto, R. M., Efficient Optimistic Parallel Simu-
lations using Reverse Computation, pp. 126-135,

111

Proceedings of the 13th Workshop on Parallel
and Distributed Simulation.

[21]Evans, Scott, Bush, Stephen F., and Hershey,
John, Information Assurance through Kolmogorov
Complexity, DARPA Information Survivability
Conference and Exposition II (DISCEX-II
2001) 12-14 June 2001, Anaheim, California.

[22] Evans, Scott and Bush, Stephen. F, Symbol Com-
pression Ratio for String Compression and Estimation
of Kolmogorov Complexity, Submitted to 2002
IEEE International Symposium on Information
Theory.

[23]Gacs, P., Tromp, J. T., and Vitányi, P. Algorithmic
Statistics, IEEE Transactions on Information
Theory, Vol 47, No 6, September 2001, pp.
2443-2463.

[24]Harmon, S. Y., DARPA Final Report, Volume I,
A Physical Model Of The Behavior Of Information
Systems, Zetetix, Oak Park, CA, October 2000.

[25]Hopcroft & Ullman, Introduction to Automata
Theory, Languages, and Computation. Addison
Wesley, 1979.

[26]Hopcroft J.E., An n Log n Algorithm for Minimiz-
ing the States in a Finite Automaton, The Theory
of Machines and Computations (Z. Kohavi,
ed.), pp. 189-196, Academic Press, New York,
1971.

[27]Kirchher W., Li M., and Vitányi P., The Miracu-
lous Universal Distribution, The Mathematical
Intelligencer, Springer-Verlag, New York, Vol.
19, No. 4, 1997.

[28]Kulkarni, Amit B. and Bush, Stephen F., Active
Network Management and Kolmogorov Complexity,
OpenArch 2001, Anchorage Alaska, April 27-28,
2001.

[29]Kulkarni, Amit B. and Bush, Stephen F., Active
Network. Management, Kolmogorov Complexity, and
Streptichrons by GE CRD Technical Report
2000CRD107, December 2000.

[30]Li, Ming and Vitányi, Paul. An Introduction to
Kolmogorov Complexity and Its Applications, ISBN
0-387-94868-6, Springer, NY 1997.

[31]Kulkarni, A., Minden, G., Hill, R., Wijata, Y.,
Sheth, S., Pindi, H., Wahhab, F., Gopinath, A.
and Nagarajan, A. Implementation of a Prototype
Active Network, IEEE OpenArch, San Francisco,
1998.

[32]Kulkarni, Amit B., Bush, Stephen, F., and Evans,
Scott C., Detecting Distributed Denial-of-Service
Attacks using Kolmogorov Complexity Metrics. Sub-
mitted to the 2002 IEEE Open Architecture

Workshop. June 28-29, 2002, Hilton New York,
New York City.

[33]Liu, George Y. The Effectiveness of a Full-Mobility
Architecture for Wireless Mobile Computing and Per-
sonal Communications. Ph.D. Thesis. Royal Insti-
tute of Technology, Stockholm, Sweden. March,
1996.

[34]Tennenhouse, D. L., Smith, J. M., Sincoskie W.
D., Wetherall, D. J., and Minden, G. J. “A Survey
of Active Network Research”. IEEE Communica-
tions Magazine, 35(1): 80-86, Jan. 1997.

[35]Virginie Galtier and Kevin L. Mills (NIST) and
Yannick Carlinet and Stephen F. Bush and Amit
Kulkarni. Predicting Resource Demand in Heteroge-
neous Active Networks, MILCOM 2001, McLean,
VA, October 28-31.

[36]Virginie Galtier and Kevin L. Mills (NIST) and
Yannick Carlinet and Stephen F. Bush and Amit
Kulkarni. Prediction and Controlling Resource
Usage in a Heterogeneous Active Network, Third
Annual International Workshop on Active Mid-
dleware Services 2001, San Francisco, CA,
August 6, 2001.

[37]Wallace, C. S. and Dowe, D. L., Minimum Mes-
sage Length and Kolmogorov Complexity, The Com-
puter Journal, Vol. 42, No 4. 1999.

[38]Chapter 5: Emergent Protocols –Complexity As
An Indicator of the On-Set Of Emergence for
Developing Efficient Protocols For Low Capa-
bility Devices In Highly Dynamic Environments

[39]Bush, Stephen F. and Kulkarni, Amit B., “Proac-
tive Network Management Using Active Net-
works,” CRD Technical Report 2000CRD112,
http://www.research.ge.com/crd_reports/
index.htm

[40]Bush, Stephen F., “Active Virtual Network Man-
agement Prediction Project Final Report”
funded by DARPA/ITO Contract Number:
F30602-98-C- 0230 supported by the Air Force
Research Laboratory/IF.

[41]Bush, Stephen F. and Kulkarni, Amit B. Active
Networks and Active Virtual Network Manage-
ment Prediction: A Proactive Management
Framework. ISBN 0-306-46560-4. Kluwer Aca-
demic/Plenum Publishers. Spring 2001.

[42]Bush, Stephen F., Active Virtual Network Man-
agement Prediction, Parallel and Discrete Event
Simulation Conference (PADS)’99, May 1999.

[43]Bush, Stephen F. and Barnett B., A Security Vul-
nerability Technique and Model, GE Corporate

112

Research and Development, T echnical Report
98CRD028, January 1998.

[44]Bush, Stephen F., Kulkarni A., Galtier V., Carli-
net Y., Mills K. L. and Ricciulli L., Predicting
and Controlling Resource Usage in an Active
Network, DARPA Active Networks PI Meeting
December 6-9, 2000, Atlanta, GA.

[45]Bush, Stephen F., Evans, Scott, Complexity-
Based Information Assurance, To be submitted
to Eighth ACM Conference on Computer and
Communications Security (CCS-8), November
5-8, 2001, Philadelphia, Pennsylvania, USA.

[46]Coore D.” Botanical Computing: A Develop-
mental Approach to Generating Interconnect
Topologies on an Amorphous Computer,”
Ph.D. Thesis, MIT Dept. of Electrical and Com-
puter Science, Dec. 1998.

[47] J. P. Crutchfield. “The calculi of emergence:
Computation, dynamics and induction,” Phys-
ica D., vol. 75, no. 1–3. Pages 11–54, 1994.

[48] James P. Crutchfield and Melanie Mitchell.
“The Evolution of Emergent Computation,”
Santa Fe Institute. 1994. Number 94-03-012.

[49]Evans, Scott, Bush, Stephen F., and Hershey,
John, Information Assurance through Kolmog-
orov Complexity Accepted for publication at
the DARPA Information Survivability Confer-
ence and Exposition II (DISCEX-II 2001) to be
held 12-14 June 2001 in Anaheim, California.

[50]David A. Fisher and Howard F. Lipson. “Emer-
gent Algorithms: A New Method for Enhancing
Survivability in Unbounded Systems,” Email:
dfisher@cert.org and hfl@cert.org CERT®
Coordination Center Software Engineering
Institute.

[51]Edward Fredkin and Tommaso Toffoli. “Conser-
vative Logic.” International Journal of Theoreti-
cal Physics, vol. 21, pp. 219–53, 1982.

[52]Harmon, S. Y., A Physical Model Of The Behav-
ior Of Information Systems, DARPA Final
Report, Volume I, Zetetix, Oak Park, CA, Octo-
ber 2000.

[53]Kirchher W., Li M., and Vitányi P., The Miracu-
lous Universal Distribution, The Mathematical
Intelligencer, Springer-Verlag, New York, Vol.
19, No. 4, 1997.

[54]Amit Kulkarni & Gary Minden. “Active Net-
work Services for Wired/Wireless Networks,”
INFOCOM’99, NY, March 1999

[55]Kulkarni, A. B. and Bush, Stephen F., Active
Network Management, Kolmogorov, Complex-

ity, and Streptichrons. GE-CRD Class I Techni-
cal Report 2000CRD107
(www.research.ge.com/crd_reports/
index.htm).

[56]Kulkarni A. B., Minden G. J., Hill R., Wijata
Y.,Sheth S., Pindi H., Wahhab F., Gopinath A.,
and Nagarajan A, Implementation of a Proto-
type Active Network, OPENARCH’98, 1998.

[57]M. Mitchell, J. P. Crutchfield and P. T. Hraber.
“Evolving Cellular Automata to Perform Com-
putations,” Physica D. 1993.

[58]Ming Li and Paul Vitányi, Introduction to Kol-
mogorov Complexity and its Applications,
Spreinger-Verlag, 1993. ISBN 0-387-94053-8.

[59]Rose, M. T., The Simple Book, An Introduction
to the Management of TCP/IP Based Internets,
Prentice Hall, 1991.

[60]Smart Dust Performer: University of California,
Berkeley, Dr. Kristofer Pister (510) 643-9268
Agent: AIC Mr. Roy Peters (520) 538–409.

[61]Tennenhouse, D. L., Smith, J. M., Sincoskie W.
D., Wetherall, D. J., and Minden, G. J., A Survey
Of Active Network Research, IEEE Communica-
tions Magazine, 35(1): 80–86, Jan. 1997.

[62]Tinker P. and Agra J., Adaptive Model Predic-
tion Using Time Warp, SCS’90, 1990.

[63]Wallace, C. S. and Dowe, D. L., Minimum Mes-
sage Length and Kolmogorov Complexity, The
Computer Journal, Vol. 42, No 4, 1999.

[64]Wojciech Zurek. Complexity, Entropy and the
Physics of Information. Addison-Wesley, 1990.
ISBN 0-201-51509-1.

[65]http://www.swarm.org
[66]Bush, Stephen F. and Kulkarni, Amit B., Active

Networks and Active Virtual Network Management
Prediction: A Proactive Management Framework.
ISBN 0-306-46560-4, Kluwer Academic/Plenum
Publishers. Spring 2001.

[67]Bush, Stephen F. and Kulkarni, Amit B. (GE),
Galtier, Virginie and Carlinet, Yannick and
Mills, Kevin L. (NIST), Ricciulli, Livio (Met-
anetworks). Predicting and Controlling Resource
Usage in an Active Network. DARPA Active Net-
works PI Meeting, December 6-9, 2000, Atlanta,
GA.

[68]Bush, Stephen, F. and Evans, Kolmogorov Com-
plexity for Information Assurance, GE Corporate
Research and Development Technical Report
2001CRD148.

[69]Bush, Stephen, F. and Kulkarni, Amit B., and
Evans, Scott C. Active Virtual Network Manage-

113

ment Prediction Enhancement via Kolmogorov Com-
plexity Estimation, Submitted to the 2002 IEEE
Open Architecture Workshop. June 28-29, 2002,
Hilton New York, New York City.

[70]Bush, Stephen, F. and Kulkarni, Amit B., and
Evans, Scott C. Self-Generating Anti-Faults Enabled
by Kolmogorov Complexity for Self-Healing Systems,
Not yet published.

[71]Carothers, C. D. and Perumalla, K. S. and
Fujimoto, R. M., Efficient Optimistic Parallel Simu-
lations using Reverse Computation, pp. 126-135,
Proceedings of the 13th Workshop on Parallel
and Distributed Simulation.

[72]Evans, Scott, Bush, Stephen F., and Hershey,
John, Information assurance through Kolmogorov
Complexity, DARPA Information Survivability
Conference and Exposition II (DISCEX-II
2001) 12-14 June 2001, Anaheim, California.

[73] Evans, Scott and Bush, Stephen. F, Symbol Com-
pression Ratio for String Compression and Estimation
of Kolmogorov Complexity, Submitted to 2002
IEEE International Symposium on Information
Theory.

[74]Goldberg, David E., Genetic Algorithms in Search,
Optimization, and Machine Learning, 1989, Addi-
son-Wesley.

[75]Goldberg, David E., Genetic and Evolutionary
Algorithms Come of Age. Communications of the
ACM, March 1994, pp 113-119.

[76]I. De Falco, M. Conte, A. Della Cioppa, E.
Tarantino and G. Trautteur, Genetic Programming
Estimates of Kolmogorov Complexity, pp. 743-750,
ISBN 1-55860-487-1, Proceedings of the 7th
International Conference on Genetic Algo-
rithms, July 19-23, San Francisco, 1997.

[77]Gacs, P., Tromp, J. T., and Vitányi, P. Algorithmic
Statistics, IEEE Transactions on Information
Theory, Vol 47, No 6, September 2001, pp.
2443-2463.

[78]Harmon, S. Y., DARPA Final Report, Volume I,
A Physical Model Of The Behavior Of Information
Systems, Zetetix, Oak Park, CA, October 2000.

[79]Hopcroft & Ullman, Introduction to Automata
Theory, Languages, and Computation. Addison
Wesley, 1979.

[80]Hopcroft J.E., An n Log n Algorithm for Minimiz-
ing the States in a Finite Automaton, The Theory
of Machines and Computations (Z. Kohavi,
ed.), pp. 189-196, Academic Press, New York,
1971.

[81]Kirchher W., Li M., and Vitányi P., The Miracu-
lous Universal Distribution, The Mathematical
Intelligencer, Springer-Verlag, New York, Vol.
19, No. 4, 1997.

[82]Kulkarni, Amit B. and Bush, Stephen F., Active
Network Management and Kolmogorov Complexity,
OpenArch 2001, Anchorage Alaska, April 27-28,
2001.

[83]Kulkarni, Amit B. and Bush, Stephen F., Active
Network. Management, Kolmogorov Complexity, and
Streptichrons by GE CRD Technical Report
2000CRD107, December 2000.

[84]Li, Ming and Vitányi, Paul. An Introduction to
Kolmogorov Complexity and Its Applications, ISBN
0-387-94868-6, Springer, NY 1997.

[85]Liu, George Y. The Effectiveness of a Full-Mobility
Architecture for Wireless Mobile Computing and Per-
sonal Communications. Ph.D. Thesis. Royal Insti-
tute of Technology, Stockholm, Sweden. March,
1996.

[86]Srinivas, M., Patnaik, Latit M., Genetic Algorithms:
A Survey. IEEE Computer, June 1994, pp 17-26.

[87]Tennenhouse, D. L., Smith, J. M., Sincoskie W.
D., Wetherall, D. J., and Minden, G. J. “A Survey
of Active Network Research”. IEEE Communica-
tions Magazine, 35(1): 80-86, Jan. 1997.

[88]Virginie Galtier and Kevin L. Mills (NIST) and
Yannick Carlinet and Stephen F. Bush and Amit
Kulkarni. Predicting Resource Demand in Heteroge-
neous Active Networks, MILCOM 2001, McLean,
VA, October 28-31.

[89]Virginie Galtier and Kevin L. Mills (NIST) and
Yannick Carlinet and Stephen F. Bush and Amit
Kulkarni. Prediction and Controlling Resource
Usage in a Heterogeneous Active Network, Third
Annual International Workshop on Active Mid-
dleware Services 2001, San Francisco, CA,
August 6, 2001.

[90]Wallace, C. S. and Dowe, D. L., Minimum Mes-
sage Length and Kolmogorov Complexity, The Com-
puter Journal, Vol. 42, No 4. 1999.

[91]I. Kuntz, J. Blaney, S. Oatley, R. Langridge, and
T. Ferrin, A geometric approach to macromolecule-
ligand interactions, Journal of Molecular Biology,
161: 269-288, 1982.

[92]B. Shoichet, D. Bodian, and I. Kuntz, Molecular
docking using shape descriptors, Journal of Comp.
Chemistry, 13(3): 380-397, 1992.

[93]E. Meng, D. Gschwend, J. Blaney, and I. Kuntz,
Orientational sampling and rigid-body minimization

114

in molecular dockin g, Proteins, 17(3): 266-278,
1993.

[94]Kirchher W., Li M., and Vitányi P., The Miracu-
lous Universal Distribution, The Mathematical
Intelligencer, Springer-Verlag, New York, Vol.
19, No. 4, 1997.

[95]Albert-Laszlo Barabasi, Vincent W. Freeh,
Hawoong Jeong & Jay B. Brockman, Parasitic
Computing, Nature, Vol. 412, 30 August 2001,
www.nature.com, pages 894-897.

[96]Aris Zakinthinos. On The Composition of Secu-
rity Properties. University of Toronto, 1997.
Ph.D. Thesis.

[97]Li, Ming and Vitányi, Paul An Introduction to
Kolmogorov Complexity and Its Applications,
Springer, NY 1997.

[98]Shannon, C.E., “A mathematical theory of com-
munication,” Bell System Technical Journal,
vol. 27, pp. 379-423 and 623-656, July and Octo-
ber 1948

[99]C. Bennett, P. Gacs, M. Li, P. Vitányi, and W.
Zurek, Information Distance, IEEE Transac-
tions on Information Theory, Vol. 44, July 1998.

[100]Walter Rudin. Principles of Mathematical
Analysis. McGraw-Hill, 1953. ISBN 0-07-054235-
X.

[101]Stephen Wolfram, Mathematica...A System for
Doing Mathematics by Computer, Addison-Wes-
ley, Reading, MA, USA, second edition, 1991.

[102]Bush, Stephen F. and Kulkarni, Amit B. Active
Networks and Active Virtual Network Manage-
ment Prediction: A Proactive Management
Framework. ISBN 0-306-46560-4. Kluwer Aca-
demic/Plenum Publishers. Spring 2001.

[103]Evans, Scott and Bush, Stephen. F, Symbol
Compression Ratio for String Compression and
Estimation of Kolmogorov Complexity, GE
Research and Development Technical Report
2001CRD159,
www.research.ge.com/~bushsf/ftn.

[104]Kulkarni, Amit B., Bush, Stephen, F., and
Evans, Scott C., Detecting Distributed Denial-of-
Service Attacks using Kolmogorov Complexity
Metrics. Submitted to the 2002 IEEE Computer
Security Foundations Workshop. June 24-26,
2002 Keltic Lodge, Cape Breton, Nova Scotia,
Canada

[105]Bush, Stephen F. and Barnett, Bruce. A Secu-
rity Vulnerability Technique and Model. GE
Corporate Research and Development, January
1998. Technical Report 98CRD028.

[106]David G. Luenberger, Linear and Nonlinear
Programming, Addison-Wesley, 1989.

[107]Theory, Vol. 44, July 1998. John D. Howard, An
Analysis of Security Incidents on the Internet
1989-1995, Ph.D. thesis, Carnegie Mellon Uni-
versity, Apr. 1997.

[108]Bush, Stephen F. and John Hershey and Kirby
Vosburgh. Brittle Systems Analysis.
http://xxx.lanl.gov/, 1999.

[109]Bush, S. F., “Active Virtual Network Manage-
ment Prediction: Complexity as a Framework
for Prediction, Optimization, and Assurance”,
IEEE Computer Society Press in the proceed-
ings of the 2002 DARPA Active Networks Con-
ference and Exposition (DANCE 2002), to be
held May 29-31, 2002, in San Francisco, Califor-
nia, USA.

[110]A. M. Turing. “On Computable Numbers with
an Application to the Entscheidungsproblem.”
Proceedings of the London Math Society, Ser. 2,
42:230-265, 1936.

[111]Adam Shwartz and Alan Weiss. Large Devia-
tions for Performance Analysis. Chapman and
Hall, 1995. ISBN 0-412-06311-5.

[112]Alfred Aho, John Hopcroft, and Jeffery Ull-
man. The Design and Analysis of Computer
Algorithms. ISBN 0-201-00029-6.

[113]Amir Dembo and Ofer Zeitouni. Large Devia-
tions Techniques and Applications. Springer,
1998. ISBN 0-387-98406-2.

[114]Aris Zakinthinos. On The Composition of
Security Properties. University of Toronto,
1997. Ph.D. Thesis.

[115]Bush, Stephen F. and Barnett, Bruce. A Secu-
rity Vulnerability Technique and Model. GE
Corporate Research and Development, January
1998. Technical Report 98CRD028.

[116]Bush, Stephen F. and Kulkarni, Amit B. Active
Networks and Active Virtual Network Manage-
ment Prediction: A Proactive Management
Framework. ISBN 0-306-46560-4. Kluwer Aca-
demic/Plenum Publishers. Spring 2001.

[117]C. Bennett, P. Gacs, M. Li, P. Vitányi, and W.
Zurek, Information Distance, IEEE Transactions
on Information Theory, Vol. 44, July 1998.

[118]Cover, T. M. and Thomas, J. A. Elements of
Information Theory. Wiley, NY, 1991.

[119]D. Denning, P. Denning, Internet Besieged,
Addison Wesley, Mass, 1998.

115

[120]D. Eastlake, J. Schiller, S. Crocker “Random-
ness Requirements for Security”, Internet draft,
30-Nov-00.

[121]David G. Luenberger, Linear and Nonlinear
Programming, Addison-Wesley, 1989.

[122]Denning, Elizabeth R, Cryptography and Data
Security, Addison-Wesley, Mass, 1982.

[123]Evans, Scott, Bush, Stephen F., and Hershey,
John, Information assurance through Kolmog-
orov Complexity Accepted for publication at
the DARPA Information Survivability Confer-
ence and Exposition II (DISCEX-II 2001) to be
held 12-14 June 2001 in Anaheim, California.

[124]Fraundorf, P. “Heat Capacity in Bits,” April 28,
2000, Downloaded from URL
http://www.umsl.edu/~fraundor/ifzx/cvin-
bits.html. An active revision of cond-
mat/9711074 in the Los Alamos archives.

[125]Frieden, Roy, B. Physics from Fisher Informa-
tion. ISBN 0-521-63167-X. Cambridge Univer-
sity Press. 1999.

[126]G. J. Chaitin. The Limits of Mathematics. Lec-
ture Notes in Computer Science, volume 888,
1995, ISSN 0302-9743.

[127]Giancoli, Douglas C. General Physics, Prentice
Hall, INC, Englewood Cliffs, NJ.

[128]Harmon, S. “A Physical Model of the Behavior
of Information Systems,” DARPA Project:
Exploring a Theory Describing the Physics of
Information Systems, Final Report, Volume I.
October 2000.

[129]Hopcroft & Ullman, “Introduction to Autom-
ata Theory, Languages, and Computation”.
Addison Wesley, 1979.

[130]Hopcroft J.E., “An n Log n algorithm for mini-
mizing the states in a finite automaton”, The
Theory of Machines and Computations (Z.
Kohavi, ed.), pp. 189-196, Academic Press, New
York, 1971.

[131]C. Bennett, P. Gacs, M. Li, P. Vitányi, and W.
Zurek, Information Distance, IEEE Transac-
tions on Information

[132]Theory, Vol. 44, July 1998. John D. Howard, An
Analysis of Security Incidents on the Internet
1989-1995, Ph.D. thesis, Carnegie Mellon Uni-
versity, Apr. 1997.

[133]Kirchher W., Li M., and Vitányi P., The Miracu-
lous Universal Distribution, The Mathematical
Intelligencer, Springer-Verlag, New York, Vol.
19, No. 4, 1997.

[134]Li, Ming and Vitányi, Paul An Introduction to
Kolmogorov Complexity and Its Applications,
Springer, NY 1997.

[135]Masud Mansuripur. Introduction to Informa-
tion Theory. Prentice Hall, 1987. ISBN 0-13-
484668-0.

[136]Ming Li and Paul Vitányi. Introduction to Kol-
mogorov Complexity and Its Applications.
Springer-Verlag, 1993. ISBN 0-387-94053-7.

[137]Rolf Herken, Ed. The Universal Turing
Machine, A Half-Century Survey. Springer-Ver-
lag, NY, 1995.

[138]Stephen F. Bush and John Hershey and Kirby
Vosburgh. Brittle Systems Analysis.
http://xxx.lanl.gov/, 1999.

[139]Stephen Wolfram, Mathematica...A System for
Doing Mathematics by Computer, Addison-Wes-
ley, Reading, MA, USA, second edition, 1991.

[140]Swarm model downloaded from URL
http://www.swarm.org.

[141]Tennenhouse, D. L., Smith, J. M., Sincoskie W.
D., Wetherall, D. J., and Minden, G. J. “A survey
of active network research”. IEEE Communica-
tions Magazine, 35(1): 80-86, Jan. 1997.

[142]W. Kirchher, M. Li, and P. Vitányi. The Miracu-
lous Universal Distribution. The Mathematical
Intelligencer, Springer-Verlag, New York, Vol.
19, No. 4, 1997.

[143]Wallace, C. S. and Dowe, D. L., Minimum Mes-
sage Length and Kolmogorov Complexity, The Com-
puter Journal, Vol. 42, No 4, 1999.

[144]Walter Rudin. Principles of Mathematical
Analysis. McGraw-Hill, 1953. ISBN 0-07-054235-
X.

[145]Wojciech Zurek. Complexity, Entropy and the
Physics of Information. Addison-Wesley, 1990.
ISBN
0-201-51509-1.

[146]Zamir Bavel. Introduction to the Theory of
Automata. ZB Publishing Industries, 1993.
ISBN
0-9623885-0-5.

[147]Rivest, R. L., Shamir, A. and Adleman, L. “A
Method for Obtaining Digital Signatures and
Public Key Cryptosystems” Communications of
the ACM, February 1978, Volume 21, Number
2.

[148]Diffie, W., and Hellman, M. “New directions in
cryptography.” IEEE Transactions on Informa-
tion Theory IT-22, 6 (Nov. 1976), 644-654.

116

[149]Gacs, P ., Tromp, J. T., and Vitányi, P. Algorithmic
Statistics, IEEE Transactions on Information
Theory, Vol. XX, No Y, Month 2001.

[150]Diffie, W. and Hellman, M “Privacy and
Authentication: An Introduction to Cryptogra-
phy” Proceedings of the IEEE, Vol. 67, No 3.
March 1979.

[151]C. E. Shannon, “A mathematical theory of
communication,” Bell System Technical Jour-
nal, vol. 27, pp. 379-423 and 623-656, July and
October 1948.

[152]Albert-Laszlo Barabasi, Vincent W. Freeh,
Hawoong Jeong & Jay B. Brockman, Parasitic
Computing, Nature, Vol. 412, 30 August 2001,
www.nature.com, pages 894-897.

[153]Evans, Scott and Bush, Stephen. F, Symbol
Compression Ratio for String Compression and
Estimation of Kolmogorov Complexity, Submit-
ted to 2002 IEEE International Symposium on
Information Theory.

[154]Kulkarni, Amit B., Bush, Stephen, F., and
Evans, Scott C., Detecting Distributed Denial-of-
Service Attacks using Kolmogorov Complexity
Metrics. Submitted to the 2002 IEEE Open
Architecture Workshop. June 28-29, 2002, Hil-
ton New York, New York City.

[155]Bush, Stephen, F. and Kulkarni, Amit B., and
Evans, Scott C. Active Virtual Network Manage-
ment Prediction Enhancement via Kolmogorov Com-
plexity Estimation, Submitted to the 2002 IEEE
Open Architecture Workshop. June 28-29, 2002,
Hilton New York, New York City.

[156]Gil, T. and Poletto, M. “MULTOPS: a data
structure for bandwidth attack detection,
“USENIX 2001.

[157]Bazek, R., Kim, H., Rozovskii, B., and Tartak-
ovsky, A. “A novel approach to detection of
denial-of-service attacks via adaptive sequential
and batch-sequential change-point methods,”
IEEE Systems, Man and Cybernetics Informa-
tion Assurance Workshop, June 2001.

[158]Li, M. and Vitányi, P. An Introduction to Kolmog-
orov Complexity and Its Applications, Springer-Ver-
lag, 1997.

[159]Kulkarni, A., Minden, G., Hill, R., Wijata, Y.,
Sheth, S., Pindi, H., Wahhab, F., Gopinath, A.
and Nagarajan, A. “Implementation of a Proto-
type Active Network,” IEEE OpenArch, San
Francisco, 1998.

[160]Bush, Stephen F. and Kulkarni, Amit B., Active
Networks and Active Virtual Network Management

Prediction: A Proactive Management Framework.
ISBN 0-306-46560-4, Kluwer Academic/Plenum
Publishers. Spring 2001.

[161]Evans, S, Bush, S. F., and Hershey, J., “Informa-
tion Assurance through Kolmogorov Complex-
ity”, DARPA Information Survivability
Conference & Exposition II, 2001, Proceedings
Vol 2, pp 322-331.

[162]Evans, S. and Bush, S. F. “Symbol Compression
Ratio for String Compression and Estimation of
Kolmogorov Complexity”, submitted to 2002
IEEE International Symposium on Information
Theory, June 30 – July 5, 2002.

[163]V. Gudkov, J. E. Johnson and S. Nussinov,
“Approaches to Network Classification”, arXiv:
cond-mat/0209111 (2002).

[164]V. Gudkov and J. E. Johnson, “Multidimen-
sional Network Monitoring for Intrusion Detec-
tion”, arXiv: cs.CR/0206020, 2002.

[165]V. Gudkov and J. E. Johnson, “New approach
for network monitoring and intrusion detec-
tion”, arXiv: cs.CR/0110019, 2001.

[166]V. Gudkov and J. E. Johnson, “Network as a
Complex System: Information Flow Analysis,
arXiv: nlin.CD/0110008, 2001.

[167]Barron, A., Rissanen, J. and Yu, B. “The Mini-
mum Description Length Principle in Coding
and Modeling,” IEEE Transactions on Informa-
tion Theory, Vol 44, No 6. October 1998.

[168]Cover, T. M. and Thomas, J. A. Elements of
Information Theory. Wiley, NY, 1991.

[169]Evans, S, Bush, S. F., and Hershey, J., “Informa-
tion Assurance through Kolmogorov Complex-
ity”, DARPA Information Survivability
Conference & Exposition II, 2001, Proceedings
Vol 2, pp 322-331.

[170]Evans, S. C, Barnett, B., and Bush, S. F. `Com-
plexity Mapping for Information Assurance and
Detection of FTP Exploits,” Unpublished.

[171]Evans, S. C. Barnett, B. “Conservation of Com-
plexity for Network Security”, accepted for pub-
lication in MILCOM 2002.

[172] Gacs, P. Tromp, J. and Vitányi, P. “Algorithmic
Statistics” IEEE Transactions on Information
Theory, 47:6(2001), 2443-2463.

[173]Kieffer, J. C. and Yang, E. “Sequential Codes,
Lossless Compression of Individual Sequences,
and Kolmogorov Complexity,” IEEE Transac-
tions of Information Theory, Vol 42, 1 January
1996.

117

[174] Kosaraju, S. R. and Manzini, G. “Compression of
Low Entropy Strings with Lempel-Ziv Algorithms”
SIAM J. COMPUT. Vol 29, No 3. pp 893-911.

[175]Kulkarni, A. B., Bush, S. F. and Evans, S. C.
``Detecting Distributed Denial-of-Service
Attacks using Kolmogorov Complexity Metrics,”
GE Research Technical Report 2001CRD176.
December 2001.

[176]Lempel, A. and Ziv, J. “On the Complexity of
Finite Sequences,” IEEE Transactions of Infor-
mation Theory, Vol IT 22, January 1976, pp 75-
81.

[177]Li, M. and Vitányi, P. An Introduction to Kol-
mogorov Complexity and Its Applications,
Springer, NY 1997.

[178]Powell, D. R, Dowe, D. L., Allison, L. and Dix,
T. I. “Discovering simple DNA sequences by
compression”, Monash University Technical
Report, monash.edu.au.

[179]Shannon, C. E. ``A mathematical Theory of
Communication,” Bell Systems Technical Jour-
nal, Vol 27, pp. 379-423, 623-656, October, 1948.

[180]Bush, Stephen F., “Active Virtual Network
Management Prediction: Complexity as a
Framework for Prediction, Optimization, and
Assurance” Proceedings of the 2002 DARPA
Active Networks Conference and Exposition
(DANCE 2002), IEEE Computer Society Press,
pp. 534-553, ISBN 0-7695-1564-9, May 29-30,
2002, San Francisco, California, USA.

[181]Vitányi, P. “Meaningful Information,” unpub-
lished. 2002 http://www.cwi.nl/ paulv.

[182] Wallace, C. S. and Dowe, D. L., “Minimum
Message Length and Kolmogorov Complexity,”
The Computer Journal, Vol. 42, No 4. 1999.

[183]Ziv, J. and Lempel, A. “Compression of individ-
ual sequences via variable length coding,” IEEE
Trans. Inform. Theory, vol IT-24, pp. 530-536,
1978.

[184]http://www.gzip.org/zlib/.
[185]Stephen F. Bush, “Active Virtual Network Man-

agement Prediction: Complexity as a Frame-
work for Prediction, Optimization, and
Assurance,” in IEEE Computer Society Press,
Proceedings of the 2002 DARPA Active Net-
works Conference and Exposition (DANCE
2002), San Francisco, CA, May 2002, pp. 534–
553, ISBN 0-7695-1564-9.

[186]S. Bhattacharjee, K. Calvert, Y Chae, S.
Merugu, M. Sanders, and E. Zegura, “CANEs:
An Execution Environment for Composable

Services,” in IEEE Computer Society Press, Pro-
ceedings of the 2002 DARPA ActiveNetworks
Conference and Exposition (DANCE 2002),
San Francisco, CA, May 2002, pp. 255–272.

[187]G. Minden, E. Komp, M. Kannan, S. Subrama-
niam, S. Tan, S. Vallabhaneni, and J. Evans,
“Composite Protocols for Innovative Active Ser-
vices,” in IEEE Computer Society Press, Pro-
ceedings of the 2002 DARPA Active Networks
Conference and Exposition (DANCE 2002),
San Francisco, CA, May 2002, pp. 157–164.

[188]I. Kuntz, J. Blaney, S. Oatley, R. Langridge, and
T. Ferrin, “A geometric approach to macromol-
ecule-ligand interactions,” Journal of Molecular
Biology, 1982.

[189]B. Shoichet, D. Bodian, and I. Kuntz, “Molecu-
lar docking using shape descriptors,” Journal of
Comp. Chemistry, 1992.

[190]E. Meng, D. Gschwend, J. Blaney, and I. Kuntz,
“Orientational sampling and rigid-body minimi-
zation in molecular docking,” Proteins, pp. 266–
278, 1993.

[191]Ming Li and Paul Vitányi, Introduction to Kol-
mogorov Complexity and its Applications., Springer-
Verlag, Aug. 1993.

[192]Amit B. Kulkarni and Stephen F. Bush, “Active
network management, kolmogorov complexity,
and streptichrons,” Tech. Rep. 2000CRD107,
General Electric Corporate Research and
Development, Dec. 2000,
http://www.research.ge.com/~bushsf/ftn.

[193]Amit B. Kulkarni and Stephen F. Bush, “Active
network management and kolmogorov com-
plexity,” in Proceedings of IEEE OpenArch 2001,
Apr. 2001.

[194]Stephen F. Bush and Scott C. Evans, “Kolmog-
orov complexity for information assurance,”
Tech. Rep. 2001CRD148, General Electric Cor-
porate Research and Development, 2001,
http://www.research.ge.com/~bushsf/ftn.

[195]Scott C. Evans, Stephen F. Bush, and John E.
Hershey, “Information assurance through kol-
mogorov complexity,” in DARPA Information Sur-
vivability Conference and Exposition II (DISCEX-II
2001), June 2001, vol. II, pp. 322–331,
http://www.research.ge.com/~bushsf/ftn.

[196]Stephen F. Bush and Amit B. Kulkarni, Active
Networks and Active Network Management: A Proac-
tive Management Framework, Kluwer Aca-
demic/Plenum Publishers, ISBN 0-306-46560-4,

118

2001,
http://www.research.ge.com/~bushsf/ftn.

[197]James M. Bower and Hamid Bolouri, Computa-
tional Modeling of Genetic and Biochemical Net-
works, The MIT Press, 2001, 0-262-02481-0.

[198]M. Conte, G. Tautteur, I. De Falco, A. Della
Cioppa, and E. Tarantino, “Genetic program-
ming estimates of kolmogorov complexity,” in
Genetic Algorithms: Proceedings of the Seventh Inter-
national Conference, Thomas Back, Ed., Michigan
State University, East Lansing, MI, USA, 19-23
1997, pp. 743–750, Morgan Kaufmann.

[199]I. De Falco, A. Iazzetta, E. Tarantino, A. Della
Cioppa, and G. Trautteur, “A kolmogorov com-
plexity-based genetic programming tool for
string compression,” in Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-
2000), Darrell Whitley, David Goldberg, Erick
Cantu-Paz, Lee Spector, Ian Parmee, and Hans-
Georg Beyer, Eds., Las Vegas, Nevada, USA, 10-
12 2000, pp. 427–434, Morgan Kaufmann.

[200]Byoung-Tak Zhang and Heinz Mühlenbein,
“Balancing accuracy and parsimony in genetic
programming,” Evolutionary Computation, vol. 3,
no. 1, pp. 17–38, 1995.

[201]Peter Nordin and Wolfgang Banzhaf, “Pro-
grammatic compression of images and sound,”
in Genetic Programming 1996: Proceedings of the
First Annual Conference, John R. Koza, David E.
Goldberg, David B. Fogel, and Rick L. Riolo,
Eds., Stanford University, CA, USA, 28–31 1996,
pp. 345–350, MIT Press.

[202]C. S. Wallace and D. L. Dowe, “Minimum mes-
sage length and Kolmogorov complexity,” The
Computer Journal, vol. 42, no. 4, pp. 270–283,
1999.

[203]C. Carothers, D. Bauer, and S. Pearce, “Ross: A
high-performance, low memory, modular time
warp system,” 2000.

[204]David E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley, 1989.

[205]David E. Goldberg, “Genetic and evolutionary
algorithms come of age,” Communications of the
ACM, pp. 113ñ119, 1994.

[206]M. Srinivas and Latit M. Patnaik, “Genetic algo-
rithms: A survey, “IEEE Computer, pp. 17ñ26,
1994.

[207]Scott Evans and Bruce Barnett, “Network secu-
rity through conservation of complexity,” in
MILCOM, The Disneyland Resort, Anaheim,
CA, USA, Oct 2002, IEEE.

[208]Amit B. Kulkarni, Stephen F. Bush, and Scott
C. Evans, “Detecting distributed denial-of-ser-
vice attacks using kolmogorov complexity met-
rics,” Tech. Rep. 2001CRD176, GE Global
Research Center, Dec. 2001.

[209]Scott C. Evans and Stephen F. Bush, “Symbol
compression ratio for string compression and
estimation of kolmogorov complexity,” Tech.
Rep. 2001CRD159, General Electric Corporate
Research and Development, 2001,
http://www.research.ge.com/~bushsf/ftn.

[210]Stephen F. Bush and Scott C. Evans, “Complex-
ity-based information assurance,” Tech. Rep.
2001CRD084, General Electric Corporate
Research and Development, Oct. 2001,
http://www.research.ge.com/~bushsf/ftn.

[211]Sipser, M. Introduction to the Theory of Com-
putation, PWS Publishing C, Boston, 1996.

[212]Crutchfield, J. “Reconstructing Language
Hierarchies,” Information Dynamics,
Atmanspracher, H. A. et al. ed. Plenum Press,
New York 1990.

[213]Mitchell, T. Machine Learning, McGraw-Hill,
1997.

[214]http://www.its.bldrdoc.gov/projects/t1glossar
y2000/

[215]Barron, A., Rissanen, J. and Yu, B. “The Mini-
mum Description Length Principle in Coding
and Modeling,” IEEE Transactions on Information
Theory, Vol 44, No 6. October 1998.

119

Appendix A
Operation of the Network Insecurity Path

Analysis Tool (NIPAT)
Network Insecurity Path Analysis Tool (NIPAT)
allows various types of node groupings in order to
help visualize the vulnerability paths.

In Figure 144, all object types are grouped
together. The nodes could also be grouped by such
characteristics as hostname or sub-network. In
Figure 145, the vulnerabilities that have been identi-
fied and grouped as vectors to vulnerability targets
have been expanded to show more detail about the
individual vulnerabilities.

In Figure 146, 40 parent objects of sun4nbin are
grouped within a single node. Also note that the
root account is clearly visible as reachable through
the vulnerability path. The next paragraph provides
an example of analyzing a vulnerability graph that provides a
quick introduction to more of NIPAT’s capabilities.

One of the security assessment operations NIPAT
can perform is to determine the vulnerability of a
particular entity given an attack on a particular
node. The target entity Host C Vulnerability 4 is
identified by a white cross hair in Figure 147, and
the attacking node is labeled Attacker with a flow

identified by the label of its connecting path. The
optimal vulnerability path is the sum of flows into
node Host C Vulnerability 4, as shown in Figure 148.
It has flow strength of 6.0. In Figure 149 the optimal
path that the attacker can take to reach the target is
shown in yellow. Thus NIPAT provides the ability to
examine how the placement of security safeguards
such as intrusion detectors within the network affect
total network security. In effect, this tool becomes a
security-modeling tool, where one can experiment
with the placement of security safeguards represent-
ing such entities as firewalls, intrusion detectors, and
access lists. These can be positioned at various loca-
tions in order to determine network security.

There are two main algorithms that can be run in
NIPAT; the first is a probabilistic analysis and the sec-
ond is a maximum flow analysis. Let us start with the
probabilistic analysis. Select a node to be the target of the
attack by clicking on the Select Nodes toggle button. Then
select a node; in this case we have selected Host C
Vuln 4. A white cross hair will appear over the node
to indicate it has been selected. Choose Algorithms and

Figure 144. Attack Vectors.

120

Security Analysis Models and finally choose Probabilistic
Analysis. A text window, shown in Figure 148, should
appear which states the probability of successful
attack followed by the result graph shown in
Figure 149. The result graph shows the most proba-
ble path of attack highlighted. The edge values are
normalized between zero and one to represent the
probability of an attacker choosing that path.

Now let us re-run the analysis using the maximal
flow algorithm [12]. Choose File and Open GML. Then
choose the gml directory and choose the example.gml file.
The graph window should appear. Select Host C Vul n

4 again and choose Algorithms and Security Analysis
Models and Max Flow Analysis. The text window
shown in Figure 150 should appear as well as the
graph results shown in Figure 151. The edge values
have been changed to show the maximum flow
along each edge towards the target node. In this
case there is a flow of 1.0 and a flow of 5.0 that can
reach the target node.

Figure 145. Vector Graph Expanded View.

Figure 146. Target Details Expanded.

121

Figure 147. Probabilistic Attack Path Analysis.

Figure 148. Probability of Attack.

Figure 149. Most Likely Attack Path.

122

Figure 150. Maximum Flow Results.

Figure 151. Maximum Flow Graph.

123

Appendix B
Draft Standard: Inline Network Management

B.1. IN-LINE NETWORK MANAGEMENT
PREDICTION DRAFT-IETF-BUSH-INLINE-
PREDICTIVE-MGT-00

Status of this Memo
• This document is an Internet-Draft and is in

full conformance with all provisions of Section
10 of RFC2026.

• Internet-Drafts are working documents of the
Internet Engineering Task Force (IETF), its
areas, and its working groups. Note that other
groups may also distribute working documents
as Internet- Drafts.

• Internet-Drafts are draft documents valid for a
maximum of six months and may be updated,
replaced, or obsoleted by other documents at
any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them
other than as “work in progress.”

• The list of current Internet-Drafts can be
accessed at http:// www.ietf.org/ietf/1id-
abstracts.txt.

• The list of Internet-Draft Shadow Directories
can be accessed at
http://www.ietf.org/shadow.html.

• This Internet-Draft will expire on December 30,
2002.

• Copyright Notice: Copyright (C) The Internet
Society (2002). All Rights Reserved.

Abstract
In-line network management prediction exploits
fine-grained models of network components,
injected into the communication network, to
enhance network performance. Accurate and fast
prediction of local network state enables more intel-
ligent network control resulting in greater perfor-
mance and fault tolerance. Accurate and fast
prediction requires algorithmic capability. Active
and Programmable Networking have enabled algo-
rithmic information to be dynamically injected into
the network allowing enhanced capability and flexi-
bility. One of the new capabilities is enhanced net-
work management via in-line management code,
that is, management algorithms embedded within
intermediate network devices. In-line network man-

agement prediction utilizes low-level algorithmic
transport capability to implement low-overhead pre-
dictive management.

 A secondary purpose of this document is to pro-
vide general interoperability information for the
injection of general purpose algorithmic informa-
tion into network devices. This document may help
in some manner to serve as a temporary bridge
between Internet Protocol and Active and Program-
mable Network applications. This may stimulate
some thought as to the content and format of “stan-
dards” information potentially required for Active
Networking. Management of the Internet Protocol
and Active and Programmable Networking is vital.
In particular, coexistence and interoperability of
active networking and Internet Protocol manage-
ment is specified in order to implement the injec-
tion of algorithmic information into a network.

Implementation Note
This document proposes a standard that assumes
the capability of injecting algorithmic information,
i.e. executable code, into the network. Active or pro-
grammable capability, as demonstrated by recent
implementation results from the DARPA Active Net-
work Program, Active Internet Protocol [8] or
recent standards in Programmable Networking [9],
help meet this requirement. While in-line predictive
management could be standardized via a vehicle
other than active packets, we choose to use active
networking as a convenient implementation for
algorithmic change within the network.

B.2. INTRODUCTION
This work in progress describes a mechanism that
allows a distributed model, injected into a network,
to predict the state of the network. The concept is
illustrated in Figure 152. The state to be predicted is
modeled within each actual network node. Thus, a
distributed model, shown in the top plane, is formed
within the actual network, shown in the bottom
plane. The top plane slides ahead of wallclock time,
although in an asynchronous manner. This means
that each simulated node MAY have its own notion
of simulation time.

124

This concept opens up a set of interoperability
issues which do not appear to have been fully
addressed. How can distributed model components
be injected into an existing network? In-line models
are injected into the network assuming the overlay
environment shown in Figure 153. In-line models in
Figure 152 are designed to run as fast as possible in
order to maintain a simulation time that is ahead of
wallclock, communicating via virtual messages with
future timestamps. What if messages are processed
out-of-order because they arrive out- of-order at a
node? How long do you wait (and slow your simula-
tion down) to make sure they are not out-of-order?
This specification provides a framework that allows
synchronization to be handled in any manner; e.g.
via a conservative (blocking) or optimistic (Time-
Warp) manner within the network. Additionally,
how can the models verify and maintain a reason-
able amount of accuracy? A mechanism is provided
in this document to allow local verification of predic-
tion accuracy. Attempts to adjust accuracy are imple-
mentation dependent. How do independent model
developers allow their models to work coherently in
this framework? Model operation is implementation
dependent, however, this specification attempts to
make certain that model messages will at least be
transported in an inter-operable manner, both
across and WITHIN, intermediate network devices.
How does one publish their model descriptions?
How are predicted values represented and accessed?
Suggestion solutions for these questions are pre-
sented in this document as well.

Overview
In-line predictive network management, which
enables greater performance and fault tolerance, is
based upon algorithmic information injected into a
network allowing system state to be predicted and
efficiently propagated throughout the network. This
paradigm enables management of the network with
continuous projection and refinement of future

state in real time. In other words, the models
injected into the network allow state to be predicted
and propagated throughout the network enabling
the network to operate simultaneously in real time
and in the future. The state of traffic, security, mobil-
ity, health, and other network properties found in
typical Simple Network Management Protocol
(SNMP) [2]. Management Information Bases (MIB)
is available for use by the management system. To
enable predictive management of applications, new
MIBs will have to be defined that hold both current
values as well as values expected to exist in the
future.

 The AgentX [5] protocol begins to address the
issue of independent SNMP agent developers
dynamically and seamlessly interconnecting their
agents into a single MIB under the control of a mas-
ter agent. AgentX specifies the protocol between the
master and sub-agents allowing the sub-agents to
connect to the master agent. The AgentX specifica-
tion complements this work-in-progress, namely, in-
line network management prediction. The in-line
network management prediction specification pro-
vides the necessary interface between agent func-
tionality injected remotely via an Active Packet and
dynamically linked' into a MIB. The agent code may
enhance an existing MIB value by allowing it to
return predicted values. Otherwise, coexistence with
AgentX is SUGGESTED. The in-line network man-
agement prediction specification enables faster
development of MIB modules with more dynamic
algorithmic capability because Active and Program-
mable networks allow lower-level, secure, dynamic
access to network devices. This has allowed injection
of predictive capability into selected portions of
existing MIBs and into selected portions of active or
programmable network devices resulting in greater
performance and fault tolerance.

Outline
This document proposes standards for the following
aspects of in-line predictive management:

• SNMP Object Time Series Representation and
Manipulation

• Common Algorithmic Description
• Multi-Party In-line Predictive Model Access and

Control
• Common Framework for Injecting Models into

the Network
• Model Interface with the Framework

Figure 152. The Distributed Model Inside the Network.

125

/ Distributed Networlt Model Pla
(spatially located inside the actual network belou^ b'jt
tenporally located ahead of the actual network)

Wallclock

/ Actual Network Pla

 The high-level components of this proposed stan-
dard are shown in Figure 153. The Active Network
Framework [10] is a work in progress. In-line Predic-
tive Management is the subject of this document.
The Internet Protocol and SNMP are well-known.

Figure 153 shows the various ways in which in-line
predictive management can be used in an active net-
work given an implementation in a particular execu-
tion environment. The in-line predictive
management application runs as an active applica-
tion on an active node. The framework is indepen-
dent of the underlying architecture of the active
network, which can take one of two forms. The pro-
tocol stack on the left shows a fully active network in
which the Node Operating System runs one or more
Execution Environments. Multiple active applica-
tions may execute in any Execution Environment.
The protocol stack on the right shows the architec-
ture of an active network overlay over IP. Essentially,
the overlay scheme uses the Active Network Encap-
sulation Protocol (ANEP) [7] as a conduit to use the
underlying IP network. The predictive management
application executes alongside the other active
applications and interacts with any managed active
applications to provide their future state. Since the
predictive management application requires only
the execution environment to run in, it is indepen-
dent of whether the active network is implemented
as an overlay or it is available as a fully active net-
work.

 The next section provides basic definitions. Fol-
lowing that, the goals of this proposed standard are

laid out. The remainder of the document develops
into progressively more detail defining interopera-
bility among algorithmic in-line network manage-
ment prediction components. Specifically, predictive
capability requires careful handling of the time
dimension. Rather than change the SNMP standard,
a tabular technique is suggested. Then, in order to
simplify design of predictive management objects,
an extension to Case Diagrams is suggested for
review and comment. This is followed by the specifi-
cation of a distributed predictive framework. It is
understood that multiple distributed predictive
mechanisms exist, however, this framework is pre-
sented for comment and review because it contains
all the necessary elements. Finally, the detailed inter-
face between the active or programmable code and
IP standard interfaces is presented.

Definitions
The following acronyms and definitions are helpful
in understanding the general concept of predictive
network management.

Figure 153. Relationship Among Underlying Assumptions
about the Predictive Management Environment.

In-line Located within, or immediately adjacent to, the flow of network traffic.

Predictive Network
Management

 The capability of reliably predicting network events or the state of the network at a time
greater than wall-clock time.

 Fine-Grained Models Small, light-weight, executable code modules that capture the behavior of a network or
application component to enable predictive network management.

 Algorithmic Information Information, in the form of algorithms contained inside executable code, as opposed to
static, non-executable data. Depending upon the complexity of the information to be trans-
ferred, an algorithmic form, or an optimal tradeoff between algorithmic and non-algorith-
mic form can be extremely flexible and efficient.

Non-Algorithmic Infor-
mation

 Information that cannot be executed. Generally requires a highly structured protocol to
transfer with well-defined code pre- installed at all points in route including source and
destination.

Small-State Information caches that can be created at network nodes, intended for use by executable
components of the same application.

126

lActiue lActive 1 In-line
1 Appl 1 Appl 1 Predict!
1 1 1 Manacieme

1
vel
ntl

1 Active Net EE 1

1 NQdeO£ 1

1 ANEP 1

Active
Appl

1
1
1

Active 1 In-line
Appl 1 Predictive

1 Management

Active Net EE

Node OS

ANEP

Intern et Protocol 1 SNMP

Ac ti: /e Netuorlt over IP

 The following acronyms and definitions are use-
ful in understanding the details of the specific pre-

dictive network management framework described
in this document.

Global-State Information caches created at network nodes, intended to be used by executable compo-
nents of different applications.

 Multi-Party In-line Pre-
dictive Management
Model

 An in-line predictive management model comprised of multiple in- line algorithmic models
that are developed, installed, utilized, and administered by multiple domains.

 A (Anti-Toggle) Used to indicate an anti-message. The anti-message is initiated by rollback and is used to
keep the system within a specific range of prediction accuracy.

AA (Active Application) An active network protocol or service that is injected into the network in the form of
active packets. The active packets are executed within the EE.

Active Network A network that allows executable code to be injected into the nodes of the network and
allows the code to be executed at the nodes.

Active Packet The executable code that is injected into the nodes of an active network.

Anti-Message An exact duplicate of a virtual message except for that the Anti- toggle bit is set. An Anti-
message is used to annihilate an invalid virtual message. This is an implementation spe-
cific feature relevant to optimistic distributed simulation.

DP (Driving Process) Generates virtual messages. Generally, the DP is implemented as an algorithm that sam-
ples network state and transforms the state into a prediction. The prediction is repre-
sented by a virtual message.

EE (Execution Environ-
ment)

 The active network execution environment. The environment that resides on active net-
work nodes that executes active packets.

 Lookahead The difference between Wallclock and LVT. This value is the distance into the future for
which predictions are made.

 LP (Logical Process) An LP consists of the Physical Process and additional data structures and instructions
which maintain message order and correct operation as a system executes ahead of real
time

LVT (Local Virtual Time) The LP contains a notion of time local to itself known as LVT. A node's LVT may differ from
other nodes' LVT and Wallclock. LVT is a local, asynchronous notion of time.

M (Message) The message portion of a Virtual Message is implementation specific. This proposed stan-
dard SUGGESTS that the message contents be opaque, however, an SNMP varbind,
intended to represent future state, MAY be transported. Executable code may also be
transported within the message contents.

NodeOS (Node Operat-
ing System)

 The active network Operating System. The supporting infrastructure on intermediate net-
works nodes that supports one or more execution environments.

PP (Physical Process) A PP is an actual process. It usually refers the actual process being modeled, or whose
state will be predicted.

 QS (Send Queue) A queue used to hold copies of messages that have been sent by an LP. The messages in
the QS may be sent as anti-messages if a rollback occurs.

Rollback The process of adjusting the accuracy of predictive components due to packets arriving
out-of-order or out-of-tolerance. Rollback is specific to optimistic distributed simulation
techniques and is thus an implementation specific feature.

RT (Receive Time) The time message value is predicted to be valid.

127

Goals
The goals of this document are...

• Simplicity—This document attempts to describe
the minimum necessary elements for in-line
management prediction. Model developers
should be able to inject models into the net-
work allowing SNMP Object value prediction.
Such models should work seamlessly with other
predictive models in the network. The goal is to
minimize the burden on the model developer
while also insuring model interoperability.

• Conformance—This document attempts con-
formance with existing standards when and
where it is possible to do so. The concept is to
facilitate a gradual transition to the active and
programmable networking paradigm.

• In-line Algorithmically-Based Management—This
document attempts to introduce the use of in-
line algorithmic management information.

B.3. A COMMON REPRESENTATION OF SNMP
OBJECT TIME SERIES FOR IN-LINE
NETWORK MANAGEMENT PREDICTION

SNMP, as currently defined, has a very limited
notion of time associated with state information.
The temporal semantics are expected to be applied
to the state by the applications reading the informa-
tion. On the other hand, predictive management
requires generation, handling and transport of
information that understands the temporal charac-
teristics of the state, i.e. whether the information is
current, future, or perhaps past information. In
other words, capability for handling the time dimen-
sion of management information needs to be
extended and standardized in some manner. In this
section, we propose a mechanism for handling time

issues in predictive management that require mini-
mal changes from the SNMP standard.

 A proposed standard technique for handling the
time dimension in predictive state systems is to build
the SNMP Object as a Table Object indexed by time.
This is shown in the following excerpt from a Load
Prediction MIB...
Figure 154. MIB Structure for Handling Object Values with Pre-
dictive Capability.

 In Figure 155, the result of an SNMP query of the
relevant predictive MIB Object is displayed. Because
the identifiers are suffixed by time, the object values
are sorted temporally. If a client wishes to know the
next predicted event on or before a given time, the
query can be formulated as a GET-NEXT with the
next predicted event time to be determined as the
suffix. The GET-NEXT-RESPONSE will contain the
next predicted event along with its time of occur-
rence. Otherwise, a value outside the table will be
returned if no such predicted value yet exists.

This allows SNMP GET-NEXT operations from a
client to locate an event nearest to the requested
time as well as search in temporal order for next pre-
dicted events.

B.4. A COMMON ALGORITHMIC DESCRIPTION
SNMP, as currently defined, assumes that non-algo-
rithmic descriptive information will be generated,
handled, or transported. Prediction requires model
development and execution. This proposed stan-
dard SUGGESTS that models are to be small, low-
overhead, and fine-grained. Fine-grained refers to
the fact that the models are locally constrained in
time and space. In this section, we propose algorith-
mic descriptions of management models designed
to encourage the understanding and use of in-line
predictive management techniques.

RQ (Receive Queue) A queue used in the algorithm to hold incoming messages to an LP. The messages are
stored in the queue in order by receive time.

SQ (State Queue) The SQ is used as a LP structure to hold saved state information for use in case of a roll-
back. The SQ is the cache into which pre-computed results are stored.

Tolerance A user-specified limit on the amount of prediction error allowed by an LP's prediction.

TR (Real Time) The current time as a time-stamp within a virtual message.

TS (Send Time) The LVT that a virtual message has been sent. This value is carried within the header of
the message. The TS is used for canceling the effects of false messages.

VM (Virtual Message) A message, or state, expected to exist in the future.

Wallclock The current time.

128

Case Diagrams[4] provide a well-known represen-
tation for the relation of management information
to information flow as shown in Figure 156. The

details of Case Diagrams will not be discussed here
(see the previous reference for more information).
The purpose of this section is to illustrate an
enhancement to the diagram that allows algorithmic

information to be specified, particularly for multi-
party predictive model interaction.

An excerpt of an SNMP Case Diagram serves to
provide a flavor of its current format. The diagram
below shows packets arriving from a lower network
layer. Some packets are determined to have encod-
ing errors and are discarded. The remaining packets
flow to the upper layer.

For the purposes of in-line predictive manage-
ment, models SHOULD be specified and injected
into the system. These models MAY coexist with the
current SNMP management model supplementing
the information with predictive values. This is
denoted by adding algorithmic model information
to the Case Diagram. A'+' sign after the name of an

Object Identifier identifies the object as one that
can return future values. The model used to predict
the future information is written within braces near
the Object identifier and incorporates the name of
the SNMP object identifiers. This document SUG-
GESTS using a common syntax for the notation such
as that used for code blocks by the C Programming
Language block constructs, Java Programming Lan-
guage blocks, or the notation used by any number of
other languages. Standardization of the model syn-
tax is outside the scope of interest for this docu-
ment. All functions MUST be defined. Operating
system function calls MAY NOT be used. The salient
point is that the algorithm must be clearly and con-
cisely defined. The algorithm must also be a faithful
representation of the actual predictive model
injected into the system. As shown in
Figure 157,'encodingErrors' is predictively

enhanced to be 10% of “'inPackets' for future values.
The predictive algorithm MUST run on the network
node and MUST be immediately available as input
for other predictively enhanced objects. The pre-
dicted value MUST be available as a response to
SNMP queries for future state information, or for
transfer to other nodes via virtual messages,
explained later in this document. SNMP Objects
that are enhanced with predictive capability are

Figure 156. An Example
Case Diagram.

Figure 157. A Sample Al-
gorithmic Description.

129

Upper Layer

outPackets

inPackets

Lower Layer

Upper Layer

oucPacKeC9

*--> ancodlngError9+ { 0.1 ■ inPacKecs)

- inPackacs

Lowar Layar

assumed to always have the actual monitored value
at Wallclock time.

If this were a wireless network, a more realistic
algorithmic model would likely incorporate channel
quality SNMP Objects into the “encodingErrors”
prediction algorithm. In many cases, the algorithmic
portion of the Case Diagram will involve SNMP
objects from other nodes. Syntax should include the
ability to identify general topological information in
the description of external objects. For example,
“inPackets[adj]” or “inPackets[edge]” should indi-
cate immediately adjacent nodes or nodes at the
topological edge of the network.

In the example shown in Figure 158, a'packets-

Forwarded' object has predictive capability denoted
by the'+' symbol. The predictive capability comes
from an algorithmic model specified within the
braces next to the object name. In this case, the pre-
diction will be the value of the “driverForwarded”
object from the node closest to the edge of the net-
work.

In Figure 159,which is an SNMP diagram of the
edge node, the “driverForwarded” object is pre-
dicted by executing the algorithm in braces. This

algorithm predicts “driverForwarded” packets to be
a linear approximation of a sample of “appPackets”.
The sample is “epsilon” time units apart and the pre-
diction is “delta” time units into the future.

B.5. MULTI-PARTY MODEL INTERACTION
Multiple developers and administrators of in-line
predictive algorithmic models will require mecha-
nisms to ensure correct understanding and opera-
tion of each others' models and intentions.

Model Registration
It may be necessary to register predictive models.
Registration is often an IANA function [6]. Algorith-
mic model registration needs to be handled more
dynamically than AgentX models. Algorithmic mod-
els, while not necessary doing so, have the capability
to install/deinstall at rapid rates. The in-line model
installation and deinstallation proposed standard is
described in Section 7.

Model Interaction
Multiple models residing on a node need to inter-
operate with one another. This document proposes
to use SNMP Object Identifiers as much as possible

Figure 155. Outp
ut from a Query of
the MIB Struc-
ture for Handling
Object Values
with Predictive
Capability.

Figure 158. An Al-
gorithmic Descrip-
tion Using State
Generated from An-
other Node De-
scribed in
Figure 159.

Figure 159. A Node Generating State Information Used by the
Node in Figure 158.

130

Upper Layer

□ utPachLEts

==> paclcGtsForwa]:ded+ { dclverFDrwarded[edge] }

inPackets

Lower Layer

Upper Layer

driverPacltet

driverForuarded-^
{ delta • (appPacItets (t-epsilon) - appPacliets (t)) / epsilon }

i?>Pacltets

Loiter Laye

for communication of state information among
models. In addition, multiple Active Application
models may choose to communicate with one
another via global state.

Co-existence with Legacy SNMP
Querying an IP addressable node for SNMP objects
that are predictively enhanced should appear trans-
parent to the person polling the node. Multiple
ports, etc. should not be required. A program
injected into a node that serves to extend an SNMP
MIB MAY do so using global state. A global state
cache holds the SNMP object values and responds
via an internal port to connect with a master SNMP
agent for the node.

B.6. A COMMON PREDICTIVE FRAMEWORK
This section specifies an algorithmic predictive man-
agement framework. The framework allows details
of distributed simulation, such as time management,
state saving, and model development to be imple-
mentation dependent while ensuring in-line inter-
operability both with, and within, the network. The
general predictive network management architec-
ture MUST contain at least one Driving Processes
(DP), MAY contain Logical Processes (LP), and
MUST use Virtual Messages (VM).

 Figure 160 illustrates network nodes containing

DPs and LPs. The annotation under nodes AH-1 and
AN-1 are an SNMP Object Identifier. SNMP Object
Identifier'oid_1' represents state of node AH-1. The
predictively enhanced SNMP Object Identifier,
“oid+” on node AN-1 is a function of'oid_1'. Note
that “f()” is shown as an arbitrary function in the fig-
ure, but MUST be well-defined in practice.

The framework makes a distinction between a
Physical Process and a Logical Process. A Physical
Process is nothing more than an executable task
defined by program code i.e. it is the implementa-
tion of a particular model or a hardware component
or a direct connection to a hardware component

representing a device. An example of a Physical Pro-
cess is the packet forwarding process on a router.
Each Physical Process MUST be encapsulated within
a Logical Process, labeled LP in Figure 160. A Logi-
cal Process consists of a Physical Process, or a model
of the Physical Process and additional implementa-
tion specific data structures and instructions to
maintain message order and correct operation as
the system executes ahead of

current (or Wallclock) time as illustrated in
greater detail in Figure 160. The details of the DP
and LP structure and operation are implementation
specific, while the inter-operation of the DP/LP sys-
tem must be specified. The LP architecture is
abstracted in Figure 161. The flow of messages

through the LP is shown by the arrows entering
from the left side of the figure. The in-line predic-
tive framework components are shown in
Figure 160, where AH-1 and AN-1 are Active Host 1
and Active Node 1 respectively. In this context,
active hosts are nodes that can inject new packets
into the network while active nodes are nodes that
behave as intermediate hops in a network.

 The Logical Process MUST handle time manage-
ment for the model. The Logical Process and the
model that it implements MAY be implemented in
any manner, however, they must be capable of inter-
operating. The framework MUST be capable of sup-
porting both conservative and optimistic time man-
agement within the network. Conservative time
management REQUIRES that the model block when
messages MAY be received out-of-order while opti-
mistic time management MAY allow model process-
ing to continue, even when messages are received
out-of- order. However, additional implementation
specific mechanisms MAY be used to account for
out-of-order messages. Such mechanisms MAY be

Figure 160. Framework Entity Types.

Figure 161. A High-level View of the Logical Process Frame-
work Component within an Active Application.

131

Actlva ApplicBtio

I Logical Process
I (Tine Managenent)

Virtual Input Maga Virtual Output Maga

+ /\ *
I I State

■• \/ -•

I State Queue I
I Predicted Valueal
I (Snall-atate) I , /\ ,

I LP l~>.
I VM I

I(nodal I
I AH-1 I

I (nodal I >.
I AN-1 I

(f (Did HJ \

I LS \—>.

embedded within the Logical Process and this speci-
fication does not attempt to standardize them.

Virtual input messages directed to a Logical Pro-
cess MUST be received by the Logical Process,
passed to the model, and processed. Virtual output
messages MAY be generated as a result.

 Virtual messages contain the following fields:
• Send Time (TS) which MUST contain the LVT

(local simulation time) at which the message
was sent

• Receive Time (TR) which MUST denote the
time the message is expected to exist in the
future

• MAY contain an (optional) Anti-toggle (A) bit
for out-of-order message handling purposes
such as message cancellation and rollback

• MUST contain the message content itself (M)
which is model specific

 Thus, a Virtual Message (VM) MUST have the
following structure...

These in-line predictive messages, or virtual mes-
sages, that contain invalid fields because the trans-
mitting Logical Processes used an incompatible
time management technique MUST be dropped.
However, it is SUGGESTED that a count of such
packets be maintained in a general in-line predictive
management framework MIB. The Receive Time
field MUST be filled with the time that this message
is predicted to be valid at the destination Logical
Process. The Send Time field MUST be filled with
the time that this message was sent by the originat-
ing

Logical Process. The Anti-Toggle (A) field MUST
be used for creating an anti-message to remove the
effects of false messages as described later. A mes-
sage MUST also contain a field for the current Real
Time (RT). If a message arrives at a Logical Process
out-of-order or with invalid information, that is, out

of a pre-specified tolerance for prediction accuracy,
it is called a false message. The method for handling
false messages is implementation specific. The
Receive Queue, shown in Figure 163, maintains

newly arriving messages in order by Receive Time
(TR). The implementation of the Receive Queue is
implementation specific.

 The Driving and Logical Processes MUST com-
municate via virtual messages as shown in
Figure 164. The Driving Process MAY generate pre-
dictions based upon SNMP queries of other layers
on the local node. The Logical Process MAY check
its prediction accuracy via SNMP queries of other
layers on its local node.

The in-line predictive framework MAY allow for
prediction refinement and correction by communi-
cating with the actual component whose state is to
be predicted via an SNMP query. The asynchronous
prediction mechanism has the following architec-
ture for Logical Process (Figure 163).

All of the Logical Process queues and caches MAY
reside in an active node's Small-State. Small-State is a
persistent memory cache left behind by an active
packet that is available to trailing active packets that
have the proper access rights. Typically, any type of
information can be stored in Small-State.

 The Receive Queue MAY maintain active virtual
message ordering and scheduling. All active packets

Figure 162. An In-line Management Prediction Virtual Mes-
sage.

Figure 163. A Logical Process Implementation and Interface.

Figure 164. Facility for Checking Accuracy with Actual Net-
work SNMP Objects in the In-line Predictive Management
Framework.

132

012345«Ve9D12345S7B9D12345«Ve9Dl

1 Source Addreaa 1

1 Destination Addiress 1

1 Send-Tlme <TS) 1

1 Receive-Time (RT| 1

1 Real-Tlme (TR| 1

|AI
+-+

Massaga (M)

1
1
1

1

Scaca Queue (KIBl

£end Queue
_______________>

I
Virtual Message Route -•--•
.....^)0^1 I —

Receive Queue 4-4
Model

* A -+
11 SHHP Object Id (old)
II

4 +
I Actual Component Hhose State Is to be Predicted I

I Victual Messages I

I ANEF I

I victual Messages I

I ANEF I

MUST be encapsulated inside Active Packets follow-
ing the Active Network Encapsulation Protocol [7]
format. Once a virtual message leaves the Receive
Queue, the virtual time of the Logical Process,
known as Local Virtual Time, MUST be updated to
the value of the Receive Time from the departing
virtual message. Virtual messages MUST originate
from Driving Processes, shown in Figure 160 that
predict future events and inject them into the system
as virtual messages. The development of a Driving
Process and Logical Process are dependent upon
the model used to enhance the desired state of the
system with predictive capability. Logical Processes
MUST only operate upon the the arrival of virtual
input messages and MUST NEVER spontaneously
generate virtual messages.

 Following the arrows across Figure 163, virtual
messages enter eitherthe Physical Process. The state
of the Logical Process is periodically saved in the
State Queue (SQ) shown as the State Cache in
Figure 163. State Queue values are used to restore
the Logical Process to a known safe state when false
messages are received. State values are continuously
compared with actual values from the Physical Pro-
cess to check for prediction accuracy, which in the
case of load prediction is the number and arrival
times of predicted and actual packets received. If the
prediction error exceeds a specified tolerance, a
rollback MAY occur.

 An important part of the architecture for net-
work management is the fact that the State Queue
within the in-line management prediction architec-
ture is the node's Management Information Base.
The State Queue values are the SNMP Management
Information Base Object values; but unlike legacy
SNMP values, these values are expected to occur in
the future. The State Queue operation is implemen-
tation dependent, however, it holds the predicted
SNMP Objects, is SUGGESTED to be implemented
in small-state, and MUST use the interface specified
in Section 7.2 to respond to SNMP queries. The cur-
rent version of SNMP has no mechanism to indicate
that a managed object is reporting its future state;
currently all results are reported with a timestamp
that contains the current time. In working on pre-
dictive active network management prediction there
is a need for managed entities to report their state
information at times in the future. These times are
unknown to the requester. A simple means to
request and respond with future time information is
to append the future time to all Management Infor-

mation Base Object Identifiers that are predicted.
This requires making these objects members of a
Management Information Base table indexed by
predicted time as discussed in Section 2. This can be
seen in the load Prediction Table shown in
Figure 154. Thus a Simple Network Management
Protocol client, who does not know the exact time of
the next predicted value, can issue a get- next com-
mand appending the current time to the known
object identifier. The managed object responds with
the requested object valid at the closest future time.
The figure illustrates an SNMP request and the cor-
responding response.

 Future times are the LVT of the Logical Process
running on a particular node. As Wallclock
approaches a particular future time, predicted val-
ues MAY be adjusted, allowing the prediction to
become more accurate. The table of future values
MAY be maintained within a sliding Lookahead win-
dow, so that old values are removed and the predic-
tion does exceed a given future time. Continuing
along the arrows in Figure 161, any virtual messages
that are generated as a result of the Physical Process
or model computation proceed to the Send Queue
(QS).

 The Send Queue is implementation dependent,
however, it MAY maintain copies of virtual messages
to be transmitted in order of their send times. The
Send Queue is required for the generation of anti-
messages during rollback. Anti-Messages annihilate
corresponding virtual messages when they meet to
correct for previously sent false messages. Annihila-
tion is simply the removal of both the actual and the
anti-message. Where the annihilation occurs is
implementation specific and left to the implemen-
tor. After leaving the Send Queue, virtual messages
travel to their destination Logical Process. Further
details on the optimistic synchronization mechanism
are implementation dependent and outside the
scope of this work in progress.

B.7. SUMMARY OF IN-LINE PREDICTION
REQUIREMENTS

An in-line management prediction model developer
MUST implement at least one Driving Processing
and MAY implement a Logical Process using the
same time management technique. The model
developer MAY include an SNMP client within the
model in order to query the modeled component in
order to improve prediction accuracy. The model
developer's Driving Process MUST generate virtual

133

messages. The Logical Process MUST receive and
process those messages. The Logical Process MAY
respond to virtual messages by generating virtual
message(s). The Logical Process MAY use active net-
work node Small- state to hold a time series of the
SNMP Object Id whose value is being continuously
predicted. The interface to the SNMP MIB small-
state is specified in the following section.

B.8. DETAILS OF THE ACTIVE NETWORK
INTERFACE

The general active network architectural framework,
without any specific network management paradigm
implementation, is shown in Figure 165.

In-line network management prediction requires
a general active network framework that supports
active applications to be injected into the proper
execution environments. The in-line management
prediction framework enforces certain minimal
requirements on the execution environment, which
are listed below.

Information Caches
The execution environment MUST provide an infor-
mation cache called 'Small State' as defined in Sec-
tion 1.3 to enable information exchange between
active packets, defined in Section 1.3. The execution
environment MAY also provide an information
cache called 'Global State', defined in Section 1.3, to
enable the in-line management prediction frame-
work to communicate with a predictively managed
active application to query its current state. The EE
MUST provide an API to be able to store and query
both 'Small State' and also to 'Global State', if it is
implemented. The EE SHOULD provide appropri-
ate access control mechanisms to both 'Small State'
and also to 'Global State', if it is implemented.

Interface to SNMP
The execution environment MUST provide an inter-
face that enables both the in-line management pre-
diction values and the values of the actual
component being managed to publish their state to
an SNMP MIB. This enables the in-line management

prediction framework to store the predicted state in
a well-known format and also enables legacy SNMP
tools to query the predicted state using SNMP opera-
tions. Additionally, the managed application is also
able to update its current state using SNMP, which
the Logical Process will be able to query. In a partic-
ular implementation of such an interface, a generic
SNMP agent coded as an active application MAY be
injected into the active nodes. The agent creates a
'Global State' on the active node with a well-known
name. The agent reads information coded in a
known format that has been written to the 'Global
State' and publishes it to the MIB. Any active applica-
tion that wishes to advertise its state uses an interface
that enables it to store its information in the well-
known 'Global State' in the given format.

 The format of the messages that are posted
between the SNMP agent and an active application
are shown in Figure 166.

The SNMP Agent and the active application MAY
use special interfaces to implement messaging
between them. A Message Packet, whose format is
shown in Figure 166, is the basic unit of inter-appli-
cation communication. Each message consists of a
message type. The type SHOULD assume one of the
following values:

• MSG_ADDINT: to add a new MIB Object of
type SNMP INTEGER

• MSG_UPDATEINT: to update the value of an
MIB Object of type SNMP INTEGER

• MSG_GETINT: to get the value of an MIB
Object of type SNMP INTEGER

• MSG_ADDLONG: to add a new MIB Object of
type SNMP LONG

• MSG_UPDATELONG: to update the value of
an MIB Object of type SNMP LONG

• MSG_GETLONG: to get the value of an MIB
Object of type SNMP LONG

• MSG_ADDSTRING: to add a new MIB Object
of type SNMP STRING

• MSG_GETSTRING: to get the value of an MIB
Object of type SNMP STRING

• MSG_UPDATESTRING: to update the value of
an MIB Object of type SNMP STRING

Figure 165. The Ac-
tive Network
Framework.

Figure 166. Message Packet.

134

Accive ftpplications
Iftft 1 I IWi 21 IWi 31 IWi ^ I

EE-specitic
Prograiming i/fi

NodeOS i/f

Low-level channels, threads,
Abstractions state storage, ...

Message Type

 The active application SHOULD send a mes-
sage of the valid message type to the SNMP agent to
perform the required operation. On receipt of a
message, the SNMP agent SHOULD attempt to per-
form the requested operation. It MUST then
respond with an acknowledgment message in a for-
mat shown in Figure 167.

 The acknowledgment message has the follow-
ing format.

The status code MUST have one of the following
values:

• OK: to indicate successful operation
• ERR_DUPENTRY: if for a MSG_ADD opera-

tion, an Object identifier of given name already
exists

• ERR_NOSUCHID: if for a MSG_UPDATE oper-
ation, an Object identifier of given name does
not exist.

 The Status message MAY be any descriptive
string explaining the nature of the failure or
SHOULD be “Success” for a successful operation.

B.9. IMPLEMENTATION
Models injected into the network allow network state
to be predicted and efficiently propagated through-
out the active network enabling the network to oper-
ate simultaneously in real time as well as project the
future state of the network. Network state informa-
tion, such as load, capacity, security, mobility, faults,
and other state information with supporting mod-
els, is automatically available for use by the manage-
ment system with current values and with values
expected to exist in the future. In the current ver-
sion, sample load and processor usage prediction
applications have been experimentally validated
using the Atropos Toolkit [11]. The toolkit's distrib-
uted simulation infrastructure takes advantage of
parallel processing within the network, because com-
putation occurs concurrently at all participating
active nodes. The network being emulated can be
queried in real time to verify the prediction accu-
racy. Measures such as rollbacks are taken to keep
the simulation in line with actual performance.

Predictive In-line Management Information
Base
Further details on the in-line network management
prediction concept can be found in Active Networks
and Active Network Management [1]. The SNMP
MIB for the in-line predictive management system
described in this proposed standard follows in the
next section.
Figure 168. The Atropos MIB. (Printouts appear on the
following pages.)

B.10.SECURITY CONSIDERATIONS
Clearly, the power and flexibility to increase perfor-
mance via the ability to inject algorithmic informa-
tion also has security implications. Fundamental
active network framework security implications will
be discussed in [10].

REFERENCES
[B.1] Bush, S. and A. Kulkarni, “Active Networks

and Active Network Management (ISBN 0-
306-46560-4)”, March 2001.

[B.2] Case, J., Mundy, R., Partain, D. and B. Stew-
art, “Introduction to Version 3 of the Inter-
net-standard Network Management
Framework”, RFC 2570, April 1999.

[B.3] Wijnen, B., Harrington, D. and R. Presuhn,
“An Architecture for Describing SNMP
Management Frameworks”, RFC 2571, May
1999.

[B.4] Case, J., McCloghrie, K., Rose, M. and S.
Waldbusser, “Management Information
Base for version 2 of the Simple Network
Management Protocol (SNMPv2)”, RFC
1450, April 1993.

[B.5] Daniele, M., Wijnen, B., Ellison, M. and D.
Francisco, “Agent Extensibility (AgentX)
Protocol Version 1", RFC 2741, January
2000.

[B.6] Narten, T. and H. Alvestrand, “Guidelines
for Writing an IANA Considerations Section
in RFCs”, BCP 26, RFC 2434, October 1998.

[B.7] University of Pennsylvania, USC/Informa-
tion Sciences Institute, University of Penn-
sylvania, BBN Technologies, University of
Pennsylvania, University of Kansas and MIT,
“Active Networks Encapsulation Protocol”,
July 1997.

[B.8] MIT and MIT, “The Active IP Option”, Sep-
tember 1996.

Figure 167. Acknowledgment Message Packet.

135

1 £tati .s Code 1

1

1
Stati .s Message

1

1

136

137

[B.9] IETF, “Proposed IEEE Standard for Applica-
tion Programming Interfaces for Networks”,
October 2000.

[B.10] Princeton University, “Active Network
Framework”, July 2002.

[B.11] <http://avnmp.sourceforge.net/down-
load.html>

138

Glossary and Definitions
Algorithmic Sufficient Statis-
tic

The shortest program S* that computes a finite set S containing d on a universal com-
puter, such that the two-part description consisting of S_ and log|S| is as short as the
shortest single program that computes d without input [172].

Complexity Theory A term used to describe a breadth of disciplines engaged in the study of what makes
something hard and what makes something easy. The sense in which something is
hard or easy separates the varieties of complexity theory, Kolmogorov complexity
considers minimal descriptions less complex than long descriptions. Computational
complexity, on the other hand, considers a problem hard if it requires a long time or a
lot of space on a Turing machine in order to be solved [211].

Computational Complexity For input of length n, if Turing machine T makes at most t(n) moves before it stop then
T is said to run in time t(n) and have time complexity t(n). If T uses at most s(n) tape
cells in the same computation it is said to use s(n) space and have space complexity
s(n) [211].

Computational Mechanics Refers to the structure of a process, in a class of complexity theory sometimes called
“structural complexity theory,” of which computational mechanics is the most devel-
oped [212].

Computational Complexity The amount of time or memory required to solve a given problem. [211].

Entropy Rate With respect to a stochastic process, the entropy rate is the rate with which the
entropy of a sequence of n random variables grows within [118].

Inductive Inference The process of reaching a general conclusion from specific examples, including con-
clusions about examples not specified. Generalization, or reasoning from the specific
to the General Case. [213]

Information Assurance Information operations (IO) that protect and defend information and information sys-
tems (IS) by ensuring their availability, integrity, authentication, confidentiality, and
non-repudiation. This includes providing for restoration of information systems by
incorporating protection, detection, and reaction capabilities. Alternatively, Informa-
tion operations (IO) that protects and defend information and information systems (IS)
by ensuring their availability, integrity, authentication, confidentiality, and non-repudi-
ation. This includes providing for restoration of information systems by incorporating
protection, detection, and reaction capabilities. [214]

Kolmogorov Complexity The length of the smallest program capable of generating a given string without input
on a Universal Turing Machine. Sometimes referred to as descriptive complexity or
Kolmgorov-Chaitin complexity [10].

Minimum Description Length
(MDL)

 Criteria for inductive inference [215].

Minimum Message Length
(MML)

Criteria for inductive inference [14].

Minimum Sufficient Statistic A statistic that is a function of all other statistics and contains no additional irrelevant
information [118].

Prefix Code A code in which no code word is the prefix of another codeword such that the it can
be instantaneously decoded [118].

Prefix Free Program Set A set of programs such that no program leading to a halting computation is the prefix
of another program [10].

139

Partial Recursive Functions The set of functions mapping strings in the set {0, 1}* to the finite set {0,1}* or
infinite set {0, 1}∞ that is computable by a Turing Machine [10].

Recursive A Turing machine that implements a function mapping an input to output and halting
on all inputs is known as recursive. All recursive functions are computable [10].

Sophistication The minimal length of a total recursive function that leads to an optimal two-part code
for a given object (binary string). One part is the model that comprises the structure or
patterns in the string. The second part consists of random data that identifies the spe-
cific object within the set defined by the model. The minimum sufficient statistic in the
recursive model class [181].

Statistic A function of a sample of data [118].

Sufficient Statistic A statistic of a distribution that contains all the information in a sample about the dis-
tribution [118].

Two-part Codes/ Two-part
Description

A description of a binary string object consisting of two separate parts. The first part
consists of a description of a model or set comprising the compressible parts of the
object. The second part consists of the enumeration of the object given the first part
and can be considered a description of the random aspects of the object [181].

Typical Element of a Set An element of a set that can be described most succinctly by an index from an enu-
meration of all elements of the set. If first describing a sub-set and then enumerating
the element can more succinctly describe an element of a set then it is not a typical
element [172].

140

